ترغب بنشر مسار تعليمي؟ اضغط هنا

Resource Allocation and Fairness in Wireless Powered Cooperative Cognitive Radio Networks

91   0   0.0 ( 0 )
 نشر من قبل Sanket Kalamkar
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We integrate a wireless powered communication network with a cooperative cognitive radio network, where multiple secondary users (SUs) powered wirelessly by a hybrid access point (HAP) help a primary user relay the data. As a reward for the cooperation, the secondary network gains the spectrum access where SUs transmit to HAP using time division multiple access. To maximize the sum-throughput of SUs, we present a secondary sum-throughput optimal resource allocation (STORA) scheme. Under the constraint of meeting target primary rate, the STORA scheme chooses the optimal set of relaying SUs and jointly performs the time and energy allocation for SUs. Specifically, by exploiting the structure of the optimal solution, we find the order in which SUs are prioritized to relay primary data. Since the STORA scheme focuses on the sum-throughput, it becomes inconsiderate towards individual SU throughput, resulting in low fairness. To enhance fairness, we investigate three resource allocation schemes, which are (i) equal time allocation, (ii) minimum throughput maximization, and (iii) proportional time allocation. Simulation results reveal the trade-off between sum-throughput and fairness. The minimum throughput maximization scheme is the fairest one as each SU gets the same throughput, but yields the least SU sum-throughput.

قيم البحث

اقرأ أيضاً

In this paper, we investigate the performance of a dual-hop block fading cognitive radio network with underlay spectrum sharing over independent but not necessarily identically distributed (i.n.i.d.) Nakagami-$m$ fading channels. The primary network consists of a source and a destination. Depending on whether the secondary network which consists of two source nodes have a single relay for cooperation or multiple relays thereby employs opportunistic relay selection for cooperation and whether the two source nodes suffer from the primary users (PU) interference, two cases are considered in this paper, which are referred to as Scenario (a) and Scenario (b), respectively. For the considered underlay spectrum sharing, the transmit power constraint of the proposed system is adjusted by interference limit on the primary network and the interference imposed by primary user (PU). The developed new analysis obtains new analytical results for the outage capacity (OC) and average symbol error probability (ASEP). In particular, for Scenario (a), tight lower bounds on the OC and ASEP of the secondary network are derived in closed-form. In addition, a closed from expression for the end-to-end OC of Scenario (a) is achieved. With regards to Scenario (b), a tight lower bound on the OC of the secondary network is derived in closed-form. All analytical results are corroborated using Monte Carlo simulation method.
In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D li nks. To enhance the throughput of spectrum sharing D2D links, which may be severely limited by the interference among D2D links, we enable the cooperation among some of the D2D links to eliminate the interference among them. We formulate a joint link scheduling and power allocation problem to maximize the overall throughput of cooperative D2D links (CDLs) and non-cooperative D2D links (NDLs), which is NP-hard. To solve the problem, we decompose it into two subproblems that maximize the sum rates of the CDLs and the NDLs, respectively. For CDL optimization, we propose a semi-orthogonal-based algorithm for joint user scheduling and power allocation. For NDL optimization, we propose a novel low-complexity algorithm to perform link scheduling and develop a Difference of Convex functions (D.C.) programming method to solve the non-convex power allocation problem. Simulation results show that the cooperative transmission can significantly increase both the number of served users and the overall system throughput.
Cognitive radio (CR) is a key enabler realizing future networks to achieve higher spectral efficiency by allowing spectrum sharing between different wireless networks. It is important to explore whether spectrum access opportunities are available, bu t conventional CR based on transmitter (TX) sensing cannot be used to this end because the paired receiver (RX) may experience different levels of interference, according to the extent of their separation, blockages, and beam directions. To address this problem, this paper proposes a novel form of medium access control (MAC) termed sense-and-predict (SaP), whereby each secondary TX predicts the interference level at the RX based on the sensed interference at the TX; this can be quantified in terms of a spatial interference correlation between the two locations. Using stochastic geometry, the spatial interference correlation can be expressed in the form of a conditional coverage probability, such that the signal-to-interference ratio (SIR) at the RX is no less than a predetermined threshold given the sensed interference at the TX, defined as an opportunistic probability (OP). The secondary TX randomly accesses the spectrum depending on OP. We optimize the SaP framework to maximize the area spectral efficiencies (ASEs) of secondary networks while guaranteeing the service quality of the primary networks. Testbed experiments using USRP and MATLAB simulations show that SaP affords higher ASEs compared with CR without prediction.
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN under imperfect channel state information (CSI). We formulate a hybrid access point (HAP) transmission energy minimization problem by a joint design of time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient under the imperfect CSI and non-linear energy harvesting model. Due to the high coupling of optimization variables, this problem is a non-convex optimization problem, which is difficult to solve directly. In order to solve the above-mentioned challenging problems, the alternating optimization (AO) is applied to decouple the optimization variables to solve the problem. Specifically, through AO, time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient are divided into three sub-problems to be solved alternately. The difference-of-convex (DC) programming is applied to solve the non-convex rank-one constraint in solving the IRS energy reflection coefficient and information reflection coefficient. Numerical simulations verify the effectiveness of our proposed algorithm in reducing HAP transmission energy compared to other benchmarks.
We consider a fully-loaded ground wireless network supporting unmanned aerial vehicle (UAV) transmission services. To enable the overload transmissions to a ground user (GU) and a UAV, two transmission schemes are employed, namely non-orthogonal mult iple access (NOMA) and relaying, depending on whether or not the GU and UAV are served simultaneously. Under the assumption of the system operating with infinite blocklength (IBL) codes, the IBL throughputs of both the GU and the UAV are derived under the two schemes. More importantly, we also consider the scenario in which data packets are transmitted via finite blocklength (FBL) codes, i.e., data transmission to both the UAV and the GU is performed under low-latency and high reliability constraints. In this setting, the FBL throughputs are characterized again considering the two schemes of NOMA and relaying. Following the IBL and FBL throughput characterizations, optimal resource allocation designs are subsequently proposed to maximize the UAV throughput while guaranteeing the throughput of the cellular user.Moreover, we prove that the relaying scheme is able to provide transmission service to the UAV while improving the GUs performance, and that the relaying scheme potentially offers a higher throughput to the UAV in the FBL regime than in the IBL regime. On the other hand, the NOMA scheme provides a higher UAV throughput (than relaying) by slightly sacrificing the GUs performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا