ﻻ يوجد ملخص باللغة العربية
Consider a multi-cell mobile edge computing network, in which each user wishes to compute the product of a user-generated data matrix with a network-stored matrix. This is done through task offloading by means of input uploading, distributed computing at edge nodes (ENs), and output downloading. Task offloading may suffer long delay since servers at some ENs may be straggling due to random computation time, and wireless channels may experience severe fading and interference. This paper aims to investigate the interplay among upload, computation, and download latencies during the offloading process in the high signal-to-noise ratio regime from an information-theoretic perspective. A policy based on cascaded coded computing and on coordinated and cooperative interference management in uplink and downlink is proposed and proved to be approximately optimal for a sufficiently large upload time. By investing more time in uplink transmission, the policy creates data redundancy at the ENs, which can reduce the computation time, by enabling the use of coded computing, as well as the download time via transmitter cooperation. Moreover, the policy allows computation time to be traded for download time. Numerical examples demonstrate that the proposed policy can improve over existing schemes by significantly reducing the end-to-end execution time.
In this paper, we introduce the Variable Coded Distributed Batch Matrix Multiplication (VCDBMM) problem which tasks a distributed system to perform batch matrix multiplication where matrices are not necessarily distinct among batch jobs. Most coded m
We consider a MapReduce-type task running in a distributed computing model which consists of ${K}$ edge computing nodes distributed across the edge of the network and a Master node that assists the edge nodes to compute output functions. The Master n
We consider the problem of designing codes with flexible rate (referred to as rateless codes), for private distributed matrix-matrix multiplication. A master server owns two private matrices $mathbf{A}$ and $mathbf{B}$ and hires worker nodes to help
We study coded distributed matrix multiplication from an approximate recovery viewpoint. We consider a system of $P$ computation nodes where each node stores $1/m$ of each multiplicand via linear encoding. Our main result shows that the matrix produc
Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as communication techniques that can make effective use of collaborative/cooperative nodes to create a virtual multiple-input/multiple-output (MIMO) system. Extend