ﻻ يوجد ملخص باللغة العربية
Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as communication techniques that can make effective use of collaborative/cooperative nodes to create a virtual multiple-input/multiple-output (MIMO) system. Extending the lifetime of networks composed of battery-operated nodes is a key issue in the design and operation of wireless sensor networks. This paper considers the effects on network lifetime of allowing closely located nodes to use CB/CT to reduce the load or even to avoid packet-forwarding requests to nodes that have critical battery life. First, the effectiveness of CB/CT in improving the signal strength at a faraway destination using energy in nearby nodes is studied. Then, the performance improvement obtained by this technique is analyzed for a special 2D disk case. Further, for general networks in which information-generation rates are fixed, a new routing problem is formulated as a linear programming problem, while for other general networks, the cost for routing is dynamically adjusted according to the amount of energy remaining and the effectiveness of CB/CT. From the analysis and the simulation results, it is seen that the proposed method can reduce the payloads of energy-depleting nodes by about 90% in the special case network considered and improve the lifetimes of general networks by about 10%, compared with existing techniques.
Limited bandwidth resources and higher energy efficiency requirements motivate incorporating multicast and broadcast transmission into the next-generation cellular network architectures, particularly for multimedia streaming applications. Layered div
Consider a multi-cell mobile edge computing network, in which each user wishes to compute the product of a user-generated data matrix with a network-stored matrix. This is done through task offloading by means of input uploading, distributed computin
In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D li
We study a wireless ad-hoc sensor network (WASN) where $N$ sensors gather data from the surrounding environment and transmit their sensed information to $M$ fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is f
This paper surveys and unifies a number of recent contributions that have collectively developed a metric for decentralized wireless network analysis known as transmission capacity. Although it is notoriously difficult to derive general end-to-end ca