ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon correlation in GaAs self-assembled quantum dots

187   0   0.0 ( 0 )
 نشر من قبل Takashi Kuroda
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on photon coincidence measurement in a single GaAs self-assembled quantum dot (QD) using a pulsed excitation light source. At low excitation, when a neutral exciton line was present in the photoluminescence (PL) spectrum, we observed nearly perfect single photon emission from an isolated QD at 670 nm wavelength. For higher excitation, multiple PL lines appeared on the spectra, reflecting the formation of exciton complexes. Cross-correlation functions between these lines showed either bunching or antibunching behavior, depending on whether the relevant emission was from a biexciton cascade or a charged exciton recombination.

قيم البحث

اقرأ أيضاً

We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole $p$, $d$ intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small $p$, $d$ level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV ($sim$ 1.55 $mu$m), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton $P$ shell and $D$ shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [1$bar{1}$0] directions.
The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition en ergies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when $mathbf{B}parallel[001]$ and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field $mathbf{B}$ orientation and strength could be determined.
The radiative and non-radiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements we extract the oscillator strength and the quantum efficiency and thei r dependence on emission energy. From our results and a theoretical model we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics experiments.
We report on the experimental observation of a hitherto ignored long-range electromagnetic coupling between self-assembled quantum dots. A 12 times enhancement of the quantum dot exciton lifetime is observed by means of time-resolved differential ref lection spectroscopy. The enhancement is explained by utilizing and extending the local field effects as developed in emph{Phys. Rev. B textbf{64},125326 (2001)}. The electromagnetic coupling of the quantum dots results in a collective polarizability, and is observed as a suppression of the emission rate. Our results reveal that the coupling is established over a distance exceeding 490 nm. Moreover, the mutual coupling strength is optically tuned by varying the pump excitation density and enables us to optically tune the exciton lifetime.
We use a many-body, atomistic empirical pseudopotential approach to predict the multi-exciton emission spectrum of a lens shaped InAs/GaAs self-assembled quantum dot. We discuss the effects of (i) The direct Coulomb energies, including the difference s of electron and hole wavefunctions, (ii) the exchange Coulomb energies and (iii) correlation energies given by a configuration interaction calculation. Emission from the groundstate of the $N$ exciton system to the $N-1$ exciton system involving $e_0to h_0$ and $e_1to h_1$ recombinations are discussed. A comparison with a simpler single-band, effective mass approach is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا