ﻻ يوجد ملخص باللغة العربية
A novel proton imaging technique was applied which allows a continuous temporal record of electric fields within a time window of several nanoseconds. This proton streak deflectometry was used to investigate transient electric fields of intense (~ 10^17 W/cm^2) laser irradiated foils. We found out that these fields with an absolute peak of up to 10^8 V/m extend over millimeter lateral extension and decay at nanosecond duration. Hence, they last much longer than the (~ ps) laser excitation, and extend much beyond the laser irradiation focus.
Electric field measurement in plasmas permits quantitative comparison between the experiment and the simulation in this study. An electro-optic (EO) sensor based on Pockels effect is demonstrated to measure wave electric fields in the laboratory magn
The production of polarized proton beams with multi-GeV energies in ultra-intense laser interaction with targets is studied with three-dimensional Particle-In-Cell simulations. A near-critical density plasma target with pre-polarized proton and triti
We investigate the electron heating dynamics in electropositive argon and helium capacitively coupled RF discharges driven at 13.56 MHz by Particle in Cell simulations and by an analytical model. The model allows to calculate the electric field outsi
Adapting a plane hydrodynamical model we briefly revisit the study of the impact of a very short and intense laser pulse onto a diluted plasma, the formation of a plasma wave, its wave-breaking, the occurrence of the slingshot effect.
Multi MeV protons cite{snavely2000intense} and heavier ions are emitted by thin foils irradiated by high-intensity lasers, due to the huge accelerating fields, up to several teraelectronvolt per meter, at sub-picosecond timescale cite{dubois2014targe