ترغب بنشر مسار تعليمي؟ اضغط هنا

On cold diluted plasmas hit by short laser pulses

99   0   0.0 ( 0 )
 نشر من قبل Gaetano Fiore
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Adapting a plane hydrodynamical model we briefly revisit the study of the impact of a very short and intense laser pulse onto a diluted plasma, the formation of a plasma wave, its wave-breaking, the occurrence of the slingshot effect.

قيم البحث

اقرأ أيضاً

We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that unused wakefield energy can be removed by an out- of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multi-kilohertz repetition rates. This article was published in Physical Review Letters 119, 044802 on 27 July 2017. DOI: 10.1103/PhysRevLett.119.044802 Copyright 2017 American Physical Society.
In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structu res. Potential LPA applications include compact radiation sources and high energy linear colliders. We propose and study plasma wave excitation by an incoherent combination of a large number of low energy laser pulses (i.e., without constraining the pulse phases). We show that, in spite of the incoherent nature of electromagnetic fields within the volume occupied by the pulses, the excited wakefield is regular and its amplitude is comparable or equal to that obtained using a single, coherent pulse with the same energy. These results provide a path to the next generation of LPA-based applications, where incoherently combined multiple pulses may enable high repetition rate, high average power LPAs.
The acceleration of super-heavy ions (SHIs) from plasmas driven by ultrashort (tens of femtoseconds) laser pulses is a challenging topic waiting for breakthrough. The detecting and controlling of the ionization process, and the adoption of the optima l acceleration scheme are crucial for the generation of highly energetic SHIs. Here, we report the experimental results on the generation of deeply ionized super-heavy ions (Au) with unprecedented energy of 1.2 GeV utilizing ultrashort laser pulses (22 fs) at the intensity of 10^22 W/cm2. A novel self-calibrated diagnostic method was developed to acquire the absolute energy spectra and charge state distributions of Au ions abundant at the charge state of 51+ and reaching up to 61+. The measured charge state distributions supported by 2D particle-in-cell simulations serves as an additional tool to inspect the ionization dynamics associated with SHI acceleration, revealing that the laser intensity is the crucial parameter for the acceleration of Au ions over the pulse duration. The use of double-layer targets results in a prolongation of the acceleration time without sacrificing the strength of acceleration field, which is highly favorable for the generation of high-energy super heavy ions.
Laser wakefield acceleration offers the promise of a compact electron accelerator for generating a multi-GeV electron beam using the huge field gradient induced by an intense laser pulse, compared to conventional rf accelerators. However, the energy and quality of the electron beam from the laser wakefield accelerator have been limited by the power of the driving laser pulses and interaction properties in the target medium. Recent progress in laser technology has resulted in the realization of a petawatt (PW) femtosecond laser, which offers new capabilities for research on laser wakefield acceleration. Here, we present a significant increase in laser-driven electron energy to the multi-GeV level by utilizing a 30-fs, 1-PW laser system. In particular, a dual-stage laser wakefield acceleration scheme (injector and accelerator scheme) was applied to boost electron energies to over 3 GeV with a single PW laser pulse. Three-dimensional particle-in-cell simulations corroborate the multi-GeV electron generation from the dual-stage laser wakefield accelerator driven by PW laser pulses.
A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petaw att lasers, proton beams with energy ~ 50 MeV and ~ 80 % polarization are proved to be obtained. Two-stage acceleration and spin dynamics of protons are investigated theoretically and by means of fully self-consistent three dimensional particle-in-cell simulations. Our results predict the dependence of the beam polarization on the intensity of the driving laser pulse. Generation of bright energetic polarized proton beams would open a domain of polarization studies with laser driven accelerators, and have potential application to enable effective detection in explorations of quantum chromodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا