ﻻ يوجد ملخص باللغة العربية
Electric field measurement in plasmas permits quantitative comparison between the experiment and the simulation in this study. An electro-optic (EO) sensor based on Pockels effect is demonstrated to measure wave electric fields in the laboratory magnetosphere of the RT-1 device with high frequency heating sources. This system gives the merits that electric field measurements can detect electrostatic waves separated clearly from wave magnetic fields, and that the sensor head is separated electrically from strong stray fields in circumference. The electromagnetic waves are excited at the double loop antenna for ion heating in electron cyclotron heated plasmas. In the air, the measured wave electric fields are in good absolute agreement with those predicted by the TASK/WF2 code. In inhomogeneous plasmas, the wave electric fields in the peripheral region are enhanced compared with the simulated electric fields. The potential oscillation of the antenna is one of the possible reason to explain the experimental results qualitatively.
A novel proton imaging technique was applied which allows a continuous temporal record of electric fields within a time window of several nanoseconds. This proton streak deflectometry was used to investigate transient electric fields of intense (~ 10
We investigate the electron heating dynamics in electropositive argon and helium capacitively coupled RF discharges driven at 13.56 MHz by Particle in Cell simulations and by an analytical model. The model allows to calculate the electric field outsi
In recent development of quantum technologies, a frequency conversion of quantum signals has been studied widely. We investigate the optic-microwave entanglement that is generated by applying an electro-optomechanical frequency conversion scheme to o
We perform fully kinetic simulations of flows known to produce dynamo in magnetohydrodynamics (MHD), considering scenarios with low Reynolds number and high magnetic Prandtl number, relevant for galaxy cluster scale fluctuation dynamos. We find that
A new type of laser photodetachment (LPD) technique has been developed for the measurement of electron sheath thickness around an electrostatic probe and for the measurement of the length of collection region of photodetached electrons (PDE). When a