ﻻ يوجد ملخص باللغة العربية
Multi MeV protons cite{snavely2000intense} and heavier ions are emitted by thin foils irradiated by high-intensity lasers, due to the huge accelerating fields, up to several teraelectronvolt per meter, at sub-picosecond timescale cite{dubois2014target}. The evolution of these huge fields is not well understood till today. Here we report, for the first time, direct and temporally resolved measurements of the electric fields produced by the interaction of a short-pulse high-intensity laser with solid targets. The results, obtained with a sub-$100$ fs temporal diagnostics, show that such fields build-up in few hundreds of femtoseconds and lasts after several picoseconds.
The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton im
In this paper we discuss the dynamics of charged particles in high-intensity laser fields in the context of the Frenet-Serret formalism, which describes the intrinsic geometry of particle worldlines. We find approximate relations for the Frenet-Serre
The goals of discovering quantum radiation dynamics in high-intensity laser-plasma interactions and engineering new laser-driven high-energy particle sources both require accurate and robust predictions. Experiments rely on particle-in-cell simulatio
We discuss the key important regimes of electromagnetic field interaction with charged particles. Main attention is paid to the nonlinear Thomson/Compton scattering regime with the radiation friction and quantum electrodynamics effects taken into acc
A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially-resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally-incident time-delayed pr