ﻻ يوجد ملخص باللغة العربية
It has been commonly conjectured that all massive >10 Msun stars are born in OB associations or clusters. Many O and B stars in the Galaxy or the Magellanic Clouds appear to exist in isolation, however. While some of these field OB stars have been ejected from their birthplaces, some are too far away from massive star forming regions to be runaways. Can massive stars form in isolation? The Spitzer survey of the Large Magellanic Cloud (aka SAGE) provides a unique opportunity for us to investigate and characterize the formation sites of massive stars for an entire galaxy. We have identified all massive young stellar objects (YSOs) in the Large Magellanic Cloud. We find that ~85% of the massive YSOs are in giant molecular clouds and ~65% are in OB associations. Only ~7% of the massive YSOs are neither in OB associations nor in giant molecular clouds. This fraction of isolated massive stars in the Large Magellanic Cloud is comparable to the 5-10% found in the Galaxy.
Super Star Clusters (Mecl > 10^5 Msol) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in
High-resolution spectroscopy of stars on the red giant branch (RGB) of the globular cluster M15 has revealed a large (~1 dex) dispersion in the abundances of r-process elements, like Ba and Eu. Neutron star mergers (NSMs) have been proposed as a majo
We developed a new population synthesis code for groups of massive stars, where we model the emission of different forms of energy and matter from the stars of the association. In particular, the ejection of the two radioactive isotopes 26Al and 60Fe
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their lu
We present causal and positional evidence of triggered star formation in bright-rimmed clouds in OB associations, e.g., Ori OB1, and Lac OB1, by photoionization. The triggering process is seen also on a much larger scale in the Orion-Monoceros Comple