ترغب بنشر مسار تعليمي؟ اضغط هنا

Were All Massive Stars Born in OB Associations and Clusters?

338   0   0.0 ( 0 )
 نشر من قبل Robert A. Gruendl
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been commonly conjectured that all massive >10 Msun stars are born in OB associations or clusters. Many O and B stars in the Galaxy or the Magellanic Clouds appear to exist in isolation, however. While some of these field OB stars have been ejected from their birthplaces, some are too far away from massive star forming regions to be runaways. Can massive stars form in isolation? The Spitzer survey of the Large Magellanic Cloud (aka SAGE) provides a unique opportunity for us to investigate and characterize the formation sites of massive stars for an entire galaxy. We have identified all massive young stellar objects (YSOs) in the Large Magellanic Cloud. We find that ~85% of the massive YSOs are in giant molecular clouds and ~65% are in OB associations. Only ~7% of the massive YSOs are neither in OB associations nor in giant molecular clouds. This fraction of isolated massive stars in the Large Magellanic Cloud is comparable to the 5-10% found in the Galaxy.



قيم البحث

اقرأ أيضاً

Super Star Clusters (Mecl > 10^5 Msol) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in pairs of interacting galaxies, and in some dwarf galaxies, but relatively few in disk galaxies like our own Milky Way. We show that a possible explanation for this difference is the presence of shear in normal spiral galaxies which impedes the formation of the very large and dense super star clusters but prefers the formation of loose OB associations possibly with a less massive cluster at the center. In contrast, in interacting galaxies and in dwarf galaxies, regions can collapse without having a large-scale sense of rotation. This lack of rotational support allows the giant clouds of gas and stars to concentrate into a single, dense and gravitationally bound system.
High-resolution spectroscopy of stars on the red giant branch (RGB) of the globular cluster M15 has revealed a large (~1 dex) dispersion in the abundances of r-process elements, like Ba and Eu. Neutron star mergers (NSMs) have been proposed as a majo r source of the r-process. However, most NSM models predict a delay time longer than the timescale for cluster formation. One possibility is that a NSM polluted the surfaces of stars in M15 long after the cluster finished forming. In this case, the abundances of the polluting elements would decrease in the first dredge-up as stars turn on to the RGB. We present Keck/DEIMOS abundances of Ba in 66 stars along the entire RGB and the top of the main sequence. The Ba abundances have no trend with stellar luminosity (evolutionary phase). Therefore, the stars were born with the Ba they have today, and Ba did not originate in a source with a delay time longer than the timescale for cluster formation. In particular, if the source of Ba was a neutron star merger, it would have had a very short delay time. Alternatively, if Ba enrichment took place before the formation of the cluster, an inhomogeneity of a factor of 30 in Ba abundance needs to be able to persist over the length scale of the gas cloud that formed M15, which is unlikely.
178 - R. Voss , R. Diehl , D.H. Hartmann 2009
We developed a new population synthesis code for groups of massive stars, where we model the emission of different forms of energy and matter from the stars of the association. In particular, the ejection of the two radioactive isotopes 26Al and 60Fe is followed, as well as the emission of hydrogen ionizing photons, and the kinetic energy of the stellar winds and supernova explosions. We investigate various alternative astrophysical inputs and the resulting output sensitivities, especially effects due to the inclusion of rotation in stellar models. As the aim of the code is the application to relatively small populations of massive stars, special care is taken to address their statistical properties. Our code incorporates both analytical statistical methods applicable to small populations, as well as extensive Monte Carlo simulations. We find that the inclusion of rotation in the stellar models has a large impact on the interactions between OB associations and their surrounding interstellar medium. The emission of 26Al in the stellar winds is strongly enhanced, compared to non-rotating models with the same mass-loss prescription. This compensates the recent reductions in the estimates of mass-loss rates of massive stars due to the effects of clumping. Despite the lower mass-loss rates, the power of the winds is actually enhanced for rotating stellar models. The supernova power (kinetic energy of their ejecta) is decreased due to longer lifetimes of rotating stars, and therefore the wind power dominates over supernova power for the first 6 Myr after a burst of star-formation. For populations typical of nearby star-forming regions, the statistical uncertainties are large and clearly non-Gaussian.
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their lu minous massive stars, though their low-mass members have not been well studied until the last couple of decades. This has changed thanks to data from X-ray observations, spectroscopic surveys and astrometry from Gaia that allows their full stellar content to be identified and their dynamics to be studied, which in turn is leading to changes in our understanding of these systems and their origins, with the old picture of Blaauw (1964) now being superseded. It is clear now that OB associations have considerably more substructure than once envisioned, both spatially, kinematically and temporally. These changes have implications for the star formation process, the formation and evolution of planetary systems, and the build-up of stellar populations across galaxies.
We present causal and positional evidence of triggered star formation in bright-rimmed clouds in OB associations, e.g., Ori OB1, and Lac OB1, by photoionization. The triggering process is seen also on a much larger scale in the Orion-Monoceros Comple x by the Orion-Eridanus Superbubble. We also show how the positioning of young stellar groups surrounding the H II region associated with Trumpler 16 in Carina Nebula supports the triggering process of star formation by the collect-and-collapse scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا