ﻻ يوجد ملخص باللغة العربية
Super Star Clusters (Mecl > 10^5 Msol) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in pairs of interacting galaxies, and in some dwarf galaxies, but relatively few in disk galaxies like our own Milky Way. We show that a possible explanation for this difference is the presence of shear in normal spiral galaxies which impedes the formation of the very large and dense super star clusters but prefers the formation of loose OB associations possibly with a less massive cluster at the center. In contrast, in interacting galaxies and in dwarf galaxies, regions can collapse without having a large-scale sense of rotation. This lack of rotational support allows the giant clouds of gas and stars to concentrate into a single, dense and gravitationally bound system.
We discuss differences in shapes, expansion velocities and fragmentation times of structures created by an energy deposition from a single Gamma Ray Burst (GRB) or an OB association to the ISM. After the initial inflation, supershells produced by GRB
We present causal and positional evidence of triggered star formation in bright-rimmed clouds in OB associations, e.g., Ori OB1, and Lac OB1, by photoionization. The triggering process is seen also on a much larger scale in the Orion-Monoceros Comple
It is widely accepted that stars do not form in isolation but result from the fragmentation of molecular clouds, which in turn leads to star cluster formation. Over time, clusters dissolve or are destroyed by interactions with molecular clouds or tid
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their lu
The Gaia mission has opened a new window into the internal kinematics of young star clusters at the sub-km/s level, with implications for our understanding of how star clusters form and evolve. We use a sample of 28 clusters and associations with age