ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-star clusters versus OB associations

117   0   0.0 ( 0 )
 نشر من قبل Carsten Weidner
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Super Star Clusters (Mecl > 10^5 Msol) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in pairs of interacting galaxies, and in some dwarf galaxies, but relatively few in disk galaxies like our own Milky Way. We show that a possible explanation for this difference is the presence of shear in normal spiral galaxies which impedes the formation of the very large and dense super star clusters but prefers the formation of loose OB associations possibly with a less massive cluster at the center. In contrast, in interacting galaxies and in dwarf galaxies, regions can collapse without having a large-scale sense of rotation. This lack of rotational support allows the giant clouds of gas and stars to concentrate into a single, dense and gravitationally bound system.

قيم البحث

اقرأ أيضاً

We discuss differences in shapes, expansion velocities and fragmentation times of structures created by an energy deposition from a single Gamma Ray Burst (GRB) or an OB association to the ISM. After the initial inflation, supershells produced by GRB s are almost static or slowly expanding, contrary to more rapidly expanding supershells created by OB associations. We discuss the position of the energy source relative to the symmetry plane of the galaxy: observed arc-like structures can be the most dense parts of structures formed by an expansion from a source above or below the galactic plane. Arcs may also form, if the expansion takes place inside a giant HI cloud. We try to reproduce the size, the age and the average distance between OB associations in the Sextant region at the edge of LMC 4.
We present causal and positional evidence of triggered star formation in bright-rimmed clouds in OB associations, e.g., Ori OB1, and Lac OB1, by photoionization. The triggering process is seen also on a much larger scale in the Orion-Monoceros Comple x by the Orion-Eridanus Superbubble. We also show how the positioning of young stellar groups surrounding the H II region associated with Trumpler 16 in Carina Nebula supports the triggering process of star formation by the collect-and-collapse scenario.
It is widely accepted that stars do not form in isolation but result from the fragmentation of molecular clouds, which in turn leads to star cluster formation. Over time, clusters dissolve or are destroyed by interactions with molecular clouds or tid al stripping, and their members become part of the general field population. Star clusters are thus among the basic building blocks of galaxies. In turn, star cluster populations, from young associations and open clusters to old globulars, are powerful tracers of the formation, assembly, and evolutionary history of their parent galaxies. Although their importance had been recognised for decades, major progress in this area has only become possible in recent years, both for Galactic and extragalactic cluster populations. Star clusters are the observational foundation for stellar astrophysics and evolution, provide essential tracers of galactic structure, and are unique stellar dynamical environments. Star formation, stellar structure, stellar evolution, and stellar nucleosynthesis continue to benefit and improve tremendously from the study of these systems. Additionally, fundamental quantities such as the initial mass function can be successfully derived from modelling either the H-R diagrams or the integrated velocity structures of, respectively, resolved and unresolved clusters and cluster populations. Star cluster studies thus span the fields of Galactic and extragalactic astrophysics, while heavily affecting our detailed understanding of the process of star formation in dense environments.This report highlights science results of the last decade in the major fields covered by IAU Commission 37: Star clusters and associations.
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their lu minous massive stars, though their low-mass members have not been well studied until the last couple of decades. This has changed thanks to data from X-ray observations, spectroscopic surveys and astrometry from Gaia that allows their full stellar content to be identified and their dynamics to be studied, which in turn is leading to changes in our understanding of these systems and their origins, with the old picture of Blaauw (1964) now being superseded. It is clear now that OB associations have considerably more substructure than once envisioned, both spatially, kinematically and temporally. These changes have implications for the star formation process, the formation and evolution of planetary systems, and the build-up of stellar populations across galaxies.
192 - Michael A. Kuhn 2018
The Gaia mission has opened a new window into the internal kinematics of young star clusters at the sub-km/s level, with implications for our understanding of how star clusters form and evolve. We use a sample of 28 clusters and associations with age s from 1-5 Myr, where lists of members are available from previous X-ray, optical, and infrared studies. Proper motions from Gaia DR2 reveals that at least 75% of these systems are expanding; however, rotation is only detected in one system. Typical expansion velocities are on the order of ~0.5 km/s, and, in several systems, there is a positive radial gradient in expansion velocity. Systems that are still embedded in molecular clouds are less likely to be expanding than those that are partially or fully revealed. One-dimensional velocity dispersions, which range from 1 to 3 km/s, imply that most of the stellar systems in our sample are supervirial and that some are unbound. In star-forming regions that contain multiple clusters or subclusters, we find no evidence that these groups are coalescing, implying that hierarchical cluster assembly, if it occurs, must happen rapidly during the embedded stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا