ترغب بنشر مسار تعليمي؟ اضغط هنا

Triggered Star Formation in OB Associations

63   0   0.0 ( 0 )
 نشر من قبل Wen-Ping Chen
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present causal and positional evidence of triggered star formation in bright-rimmed clouds in OB associations, e.g., Ori OB1, and Lac OB1, by photoionization. The triggering process is seen also on a much larger scale in the Orion-Monoceros Complex by the Orion-Eridanus Superbubble. We also show how the positioning of young stellar groups surrounding the H II region associated with Trumpler 16 in Carina Nebula supports the triggering process of star formation by the collect-and-collapse scenario.



قيم البحث

اقرأ أيضاً

Super Star Clusters (Mecl > 10^5 Msol) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in pairs of interacting galaxies, and in some dwarf galaxies, but relatively few in disk galaxies like our own Milky Way. We show that a possible explanation for this difference is the presence of shear in normal spiral galaxies which impedes the formation of the very large and dense super star clusters but prefers the formation of loose OB associations possibly with a less massive cluster at the center. In contrast, in interacting galaxies and in dwarf galaxies, regions can collapse without having a large-scale sense of rotation. This lack of rotational support allows the giant clouds of gas and stars to concentrate into a single, dense and gravitationally bound system.
123 - Paul C. Clark 2005
We investigate the formation of star clusters in an unbound GMC, where the supporting kinetic energy is twice as large as the clouds self-gravity. This cloud manages to form a series of star clusters and disperse, all within roughly 2 crossing times (10 Myr), supporting recent claims that star formation is a rapid process. Simple assumptions about the nature of the star formation occurring in the clusters allows us to place an estimate for the star formation efficiency at about 5 to 10 %, consistent with observations. We also propose that unbound clouds can act as a mechanism for forming OB associations. The clusters that form in the cloud behave as OB subgroups. These clusters are naturally expanding from one another due to unbound nature of the flows that create them. The properties of the cloud we present here are are consistent with those of classic OB associations.
We discuss differences in shapes, expansion velocities and fragmentation times of structures created by an energy deposition from a single Gamma Ray Burst (GRB) or an OB association to the ISM. After the initial inflation, supershells produced by GRB s are almost static or slowly expanding, contrary to more rapidly expanding supershells created by OB associations. We discuss the position of the energy source relative to the symmetry plane of the galaxy: observed arc-like structures can be the most dense parts of structures formed by an expansion from a source above or below the galactic plane. Arcs may also form, if the expansion takes place inside a giant HI cloud. We try to reproduce the size, the age and the average distance between OB associations in the Sextant region at the edge of LMC 4.
The star formation triggered in dense walls of expanding shells will be discussed. The fragmentation process is studied using the linear and non-linear perturbation theory. The influence of the energy input, the ISM distribution and the speed of soun d is examined analytically and by numerical simulations. We formulate the condition for the gravitational fragmentation of expanding shells: if the total surface density of the disc is higher than a certain critical value, shells are unstable. This value depends on the energy of the shell and the sound speed in the ISM. As an example the formation of OB associations near the Sun will be discussed. We trace their orbits in the Milky Way to see where they have been born: 10 - 12 Myr ago progenitors of Scorpius-Centaurus OB associations and the Orion OB association resided together within a sheet-like region elongated in the $l = 20-200degrees direction, showing that the local OB associations may be formed as fragments of an expanding supershell.
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their lu minous massive stars, though their low-mass members have not been well studied until the last couple of decades. This has changed thanks to data from X-ray observations, spectroscopic surveys and astrometry from Gaia that allows their full stellar content to be identified and their dynamics to be studied, which in turn is leading to changes in our understanding of these systems and their origins, with the old picture of Blaauw (1964) now being superseded. It is clear now that OB associations have considerably more substructure than once envisioned, both spatially, kinematically and temporally. These changes have implications for the star formation process, the formation and evolution of planetary systems, and the build-up of stellar populations across galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا