ﻻ يوجد ملخص باللغة العربية
OB associations are unbound groups of young stars made prominent by their bright OB members, and have long been thought to be the expanded remnants of dense star clusters. They have been important in astrophysics for over a century thanks to their luminous massive stars, though their low-mass members have not been well studied until the last couple of decades. This has changed thanks to data from X-ray observations, spectroscopic surveys and astrometry from Gaia that allows their full stellar content to be identified and their dynamics to be studied, which in turn is leading to changes in our understanding of these systems and their origins, with the old picture of Blaauw (1964) now being superseded. It is clear now that OB associations have considerably more substructure than once envisioned, both spatially, kinematically and temporally. These changes have implications for the star formation process, the formation and evolution of planetary systems, and the build-up of stellar populations across galaxies.
We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field
OB associations are the prime star forming sites in galaxies. However the detailed formation process of such stellar systems still remains a mystery. In this context, identifying the presence of substructures may help tracing the footprints of their
A photometric UBV survey is presented for 610 stars in a region surrounding the Cepheid AQ Puppis and centered southwest of the variable, based upon photoelectric measures for 14 stars and calibrated iris photometry of photographic plates of the fiel
Super Star Clusters (Mecl > 10^5 Msol) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in
We report abundances of elements from $_{26}$Fe to $_{40}$Zr in the cosmic radiation measured by the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument during 55 days of exposure on a long-duration balloon flight over Antarctica. These obse