ﻻ يوجد ملخص باللغة العربية
We consider a scalar charge travelling in a curved background spacetime. We calculate the quasi-local contribution to the scalar self-force experienced by such a particle following a geodesic in a general spacetime. We also show that if we assume a massless field and a vacuum background spacetime, the expression for the self-force simplifies significantly. We consider some specific cases whose gravitational analog are of immediate physical interest for the calculation of radiation reaction corrected orbits of binary black hole systems. These systems are expected to be detectable by the LISA space based gravitational wave observatory. We also investigate how alternate techniques may be employed in some specific cases and use these as a check on our own results.
We extend our previous calculation of the quasi-local contribution to the self-force on a scalar particle to general (not necessarily geodesic) motion in a general spacetime. In addition to the general case and the case of a particle at rest in a sta
We provide expansions of the Detweiler-Whiting singular field for motion along arbitrary, planar accelerated trajectories in Schwarzschild spacetime. We transcribe these results into mode-sum regularization parameters, computing previously unknown te
Through detection by low gravitational wave space interferometers, the capture of stars by supermassive black holes will constitute a giant step forward in the understanding of gravitation in strong field. The impact of the perturbations on the motio
We use a simplified formalism to re-compute the single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on de Sitter background which was originally made by Boran, Kahya and Park [1-3]. Our result resolves the pro
We study the free motion of a massive particle moving in the background of a Finslerian deformation of a plane gravitational wave in Einsteins General Relativity. The deformation is a curved version of a one-parameter family of Relativistic Finsler s