ﻻ يوجد ملخص باللغة العربية
We provide expansions of the Detweiler-Whiting singular field for motion along arbitrary, planar accelerated trajectories in Schwarzschild spacetime. We transcribe these results into mode-sum regularization parameters, computing previously unknown terms that increase the convergence rate of the mode-sum. We test our results by computing the self-force along a variety of accelerated trajectories. For non-uniformly accelerated circular orbits we present results from a new 1+1D discontinuous Galerkin time-domain code which employs an effective-source. We also present results for uniformly accelerated circular orbits and accelerated bound eccentric orbits computed within a frequency-domain treatment. Our regularization results will be useful for computing self-consistent self-force inspirals where the particles worldline is accelerated with respect to the background spacetime.
The retarded Green function for linear field perturbations of black hole spacetimes is notoriously difficult to calculate. One of the difficulties is due to a Dirac-$delta$ divergence that the Green function possesses when the two spacetime points ar
The main aim of this paper is twofold. (1) Exact solutions of a scalar field in the Schwarzschild spacetime are presented. The exact wave functions of scattering states and bound-states are presented. Besides the exact solution, we also provide expli
Several recent investigations have shown that there is a holographic relationship between the bulk degrees of freedom and the surface degrees of freedom in the spacetime. Furthermore, the entropy on the horizon can produce an entropic force effect on
In this paper we investigate the equilibrium self-gravitating radiation in higher dimensional, plane symmetric anti-de Sitter space. We find that there exist essential differences from the spherically symmetric case: In each dimension ($dgeq 4$), the
The electromagnetic self-force equation of motion is known to be afflicted by the so-called runaway problem. A similar problem arises in the semiclassical Einsteins field equation and plagues the self-consistent semiclassical evolution of spacetime.