ﻻ يوجد ملخص باللغة العربية
We study the free motion of a massive particle moving in the background of a Finslerian deformation of a plane gravitational wave in Einsteins General Relativity. The deformation is a curved version of a one-parameter family of Relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashows Very Special Relativity group ISIM(2). The partially broken Carroll Symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler-geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter $b$. We then replace the underlying plane gravitational wave by a homogenous pp-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaitre model.
It is shown that the free motion of massive particles moving in static spacetimes are given by the geodesics of an energy-dependent Riemannian metric on the spatial sections analogous to Jacobis metric in classical dynamics. In the massless limit Jac
The Jacobi equation for geodesic deviation describes finite size effects due to the gravitational tidal forces. In this paper we show how one can integrate the Jacobi equation in any spacetime admitting completely integrable geodesics. Namely, by lin
Weakly nonlinear dynamics in anti-de Sitter (AdS) spacetimes is reviewed, keeping an eye on the AdS instability conjecture and focusing on the resonant approximation that accurately captures in a simplified form the long-term evolution of small initi
In this paper we return to the subject of Jacobi metrics for timelike and null geodsics in stationary spactimes, correcting some previous misconceptions. We show that not only null geodesics, but also timelike geodesics are governed by a Jacobi-Maupe
The Riemann Hypothesis states that the Riemann zeta function $zeta(z)$ admits a set of non-trivial zeros that are complex numbers supposed to have real part $1/2$. Their distribution on the complex plane is thought to be the key to determine the numb