ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-local contribution to the scalar self-force: Non-geodesic Motion

84   0   0.0 ( 0 )
 نشر من قبل Barry Wardell
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend our previous calculation of the quasi-local contribution to the self-force on a scalar particle to general (not necessarily geodesic) motion in a general spacetime. In addition to the general case and the case of a particle at rest in a stationary spacetime, we consider as examples a particle held at rest in Reissner-Nordstrom and Kerr-Newman space-times. This allows us to most easily analyse the effect of non-geodesic motion on our previous results and also allows for comparison to existing results for Schwarzschild spacetime.



قيم البحث

اقرأ أيضاً

We consider a scalar charge travelling in a curved background spacetime. We calculate the quasi-local contribution to the scalar self-force experienced by such a particle following a geodesic in a general spacetime. We also show that if we assume a m assless field and a vacuum background spacetime, the expression for the self-force simplifies significantly. We consider some specific cases whose gravitational analog are of immediate physical interest for the calculation of radiation reaction corrected orbits of binary black hole systems. These systems are expected to be detectable by the LISA space based gravitational wave observatory. We also investigate how alternate techniques may be employed in some specific cases and use these as a check on our own results.
Recent works showing that homogeneous and isotropic cosmologies involving scalar fields correspond to geodesics of certain augmented spaces are generalized to the non-minimal coupling case. As the Maupertuis-Jacobi principle in classical mechanics, t his result allows us, in principle, to infer some of the dynamical properties of the cosmologies from the geometry of the associated augmented spaces.
We provide expansions of the Detweiler-Whiting singular field for motion along arbitrary, planar accelerated trajectories in Schwarzschild spacetime. We transcribe these results into mode-sum regularization parameters, computing previously unknown te rms that increase the convergence rate of the mode-sum. We test our results by computing the self-force along a variety of accelerated trajectories. For non-uniformly accelerated circular orbits we present results from a new 1+1D discontinuous Galerkin time-domain code which employs an effective-source. We also present results for uniformly accelerated circular orbits and accelerated bound eccentric orbits computed within a frequency-domain treatment. Our regularization results will be useful for computing self-consistent self-force inspirals where the particles worldline is accelerated with respect to the background spacetime.
155 - A. Spallicci , S. Aoudia 2009
Through detection by low gravitational wave space interferometers, the capture of stars by supermassive black holes will constitute a giant step forward in the understanding of gravitation in strong field. The impact of the perturbations on the motio n of the star is computed via the tail, the back-scattered part of the perturbations, or via a radiative Green function. In the former approach, the self-force acts upon the background geodesic, while in the latter, the geodesic is conceived in the total (background plus perturbations) field. Regularisations (mode-sum and Riemann-Hurwitz $zeta$ function) intervene to cancel divergencies coming from the infinitesimal size of the particle. The non-adiabatic trajectories require the most sophisticated techniques for studying the evolution of the motion, like the self-consistent approach.
We study the geodesic motion of test particles in the space-time of non-compact boson stars. These objects are made of a self-interacting scalar field and -- depending on the scalar fields mass -- can be as dense as neutron stars or even black holes. In contrast to the former these objects do not contain a well-defined surface, while in contrast to the latter the space-time of boson stars is globally regular, can -- however -- only be given numerically. Hence, the geodesic equation also has to be studied numerically. We discuss the possible orbits for massive and massless test particles and classify them according to the particles energy and angular momentum. The space-time of a boson star approaches the Schwarzschild space-time asymptotically, however deviates strongly from it close to the center of the star. As a consequence, we find additional bound orbits of massive test particles close to the center of the star that are not present in the Schwarzschild case. Our results can be used to make predictions about extreme-mass-ratio inspirals (EMRIs) and we hence compare our results to recent observational data of the stars orbiting Sagittarius A* - the radiosource at the center of our own galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا