ﻻ يوجد ملخص باللغة العربية
We extend our previous calculation of the quasi-local contribution to the self-force on a scalar particle to general (not necessarily geodesic) motion in a general spacetime. In addition to the general case and the case of a particle at rest in a stationary spacetime, we consider as examples a particle held at rest in Reissner-Nordstrom and Kerr-Newman space-times. This allows us to most easily analyse the effect of non-geodesic motion on our previous results and also allows for comparison to existing results for Schwarzschild spacetime.
We consider a scalar charge travelling in a curved background spacetime. We calculate the quasi-local contribution to the scalar self-force experienced by such a particle following a geodesic in a general spacetime. We also show that if we assume a m
Recent works showing that homogeneous and isotropic cosmologies involving scalar fields correspond to geodesics of certain augmented spaces are generalized to the non-minimal coupling case. As the Maupertuis-Jacobi principle in classical mechanics, t
We provide expansions of the Detweiler-Whiting singular field for motion along arbitrary, planar accelerated trajectories in Schwarzschild spacetime. We transcribe these results into mode-sum regularization parameters, computing previously unknown te
Through detection by low gravitational wave space interferometers, the capture of stars by supermassive black holes will constitute a giant step forward in the understanding of gravitation in strong field. The impact of the perturbations on the motio
We study the geodesic motion of test particles in the space-time of non-compact boson stars. These objects are made of a self-interacting scalar field and -- depending on the scalar fields mass -- can be as dense as neutron stars or even black holes.