ﻻ يوجد ملخص باللغة العربية
We develop a nonperturbative approach to the quantum Hall bilayer (QHB) at u=1 using trial wave functions. We predict phases of the QHB for arbitrary distance d and, our approach, in a dual picture, naturally introduces a new kind of quasiparticles - neutral fermions. Neutral fermion is a composite of two merons of the same vorticity and opposite charge. For small d (i.e. in the superfluid phase), neutral fermions appear as dipoles. At larger d dipoles dissociate into the phase of the two decoupled Fermi-liquid-like states. This scenario is relevant for the experimental situation where impurities lock charged merons. In a translation invariant (clean) system, continuous creation and annihilation of meron-antimeron pairs evolves the QHB toward a paired phase. The quantum fluctuations fix the form of the pairing function to g(z)=1/z^*. A part of the description of the paired phase is the 2D superconductor i.e. BF Chern-Simons theory. The paired phase is not very distinct from the superfluid phase.
Recent experiments on quantum Hall bilayers near total filling factor 1 have demonstrated that they support an ``imperfect two-dimensional superfluidity, in which there is nearly dissipationless transport at non-vanishing temperature observed both in
We analyze the transport properties of bilayer quantum Hall systems at total filling factor $ u=1$ in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charge
Measurements in GaAs hole bilayers with unequal layer densities reveal a pronounced magneto-resistance hysteresis at the magnetic field positions where either the majority or minority layer is at Landau level filling factor one. At a fixed field in t
The Halperin $(m,m,n)$ bilayer quantum Hall states are studied on thin cylinders. In this limit, charge density wave patterns emerge that are characteristic of the underlying quantum Hall state. The general patterns are worked out from a variant of t
The tilting angular dependence of the energy gap was measured in the bilayer quantum Hall state at the Landau level filling $ u=1$ by changing the density imbalance between the two layers. The observed gap behavior shows a continuous transformation f