ترغب بنشر مسار تعليمي؟ اضغط هنا

Layer charge instability in unbalanced bilayer systems in the quantum Hall regime

159   0   0.0 ( 0 )
 نشر من قبل Emanuel Tutuc
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements in GaAs hole bilayers with unequal layer densities reveal a pronounced magneto-resistance hysteresis at the magnetic field positions where either the majority or minority layer is at Landau level filling factor one. At a fixed field in the hysteretic regions, the resistance exhibits an unusual time dependence, consisting of random, bidirectional jumps followed by slow relaxations. These anomalies are apparently caused by instabilities in the charge distribution of the two layers.



قيم البحث

اقرأ أيضاً

We analyze the transport properties of bilayer quantum Hall systems at total filling factor $ u=1$ in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charge d topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries, current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
Recent experiments on quantum Hall bilayers near total filling factor 1 have demonstrated that they support an ``imperfect two-dimensional superfluidity, in which there is nearly dissipationless transport at non-vanishing temperature observed both in counterflow resistance and interlayer tunneling. We argue that this behavior may be understood in terms of a {it coherence network} induced in the bilayer by disorder, in which an incompressible, coherent state exists in narrow regions separating puddles of dense vortex-antivortex pairs. A renormalization group analysis shows that it is appropriate to describe the system as a vortex liquid. We demonstrate that the dynamics of the nodes of the network leads to a power law temperature dependence of the tunneling resistance, whereas thermally activated hops of vortices across the links control the counterflow resistance.
The hysteresis observed in the magnetoresistance of bilayer 2D systems in the quantum Hall regime is generally attributed to the long time constant for charge transfer between the 2D systems due to the very low conductivity of the quantum Hall bulk s tates. We report electrometry measurements of a bilayer 2D system that demonstrate that the hysteresis is instead due to non-equilibrium induced current. This finding is consistent with magnetometry and electrometry measurements of single 2D systems, and has important ramifications for understanding hysteresis in bilayer 2D systems.
We study the minimal excitations of fractional quantum Hall edges, extending the notion of levitons to interacting systems. Using both perturbative and exact calculations, we show that they arise in response to a Lorentzian potential with quantized f lux. They carry an integer charge, thus involving several Laughlin quasiparticles, and leave a Poissonian signature in a Hanbury-Brown and Twiss partition noise measurement at low transparency. This makes them readily accessible experimentally, ultimately offering the opportunity to study real-time transport of Abelian and non-Abelian excitations.
Using a periodic train of Lorentzian voltage pulses, which generates soliton-like electronic excitations called Levitons, we investigate the charge density backscattered off a quantum point contact in the fractional quantum Hall regime. We find a reg ular pattern of peaks and valleys, reminiscent of analogous self-organization recently observed for optical solitons in non-linear environments. This crystallization phenomenon is confirmed by additional side dips in the Hong-Ou-Mandel noise, a feature that can be observed in nowadays electron quantum optics experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا