ﻻ يوجد ملخص باللغة العربية
The Halperin $(m,m,n)$ bilayer quantum Hall states are studied on thin cylinders. In this limit, charge density wave patterns emerge that are characteristic of the underlying quantum Hall state. The general patterns are worked out from a variant of the plasma analogy. Torus degeneracies are recovered, and for some important special cases a connection to well-known spin chain physics is made. By including interlayer tunneling, we also work out the critical behavior of a possible phase transition between the $(331)$ state and the non-abelian Moore-Read state in the thin cylinder limit.
Tellurium (Te) is a narrow bandgap semiconductor with a unique chiral crystal structure. The topological nature of electrons in the Te conduction band can be studied by realizing n-type doping using atomic layer deposition (ALD) technique on two-dime
We develop a nonperturbative approach to the quantum Hall bilayer (QHB) at u=1 using trial wave functions. We predict phases of the QHB for arbitrary distance d and, our approach, in a dual picture, naturally introduces a new kind of quasiparticles
Recent experiments on quantum Hall bilayers near total filling factor 1 have demonstrated that they support an ``imperfect two-dimensional superfluidity, in which there is nearly dissipationless transport at non-vanishing temperature observed both in
We develop a group-theoretical approach to describe $N$-component composite bosons as planar electrons attached to an odd number $f$ of Chern-Simons flux quanta. This picture arises when writing the Coulomb exchange interaction as a quantum Hall ferr
We analyze the transport properties of bilayer quantum Hall systems at total filling factor $ u=1$ in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charge