ﻻ يوجد ملخص باللغة العربية
The low-temperature behavior of the asymmetric single-impurity Anderson model is studied by diagrammatic methods resulting in analytically controllable approximations. We first discuss the ways one can simplify parquet equations in critical regions of singularities in the two-particle vertex. The scale vanishing at the critical point defines the Kondo temperature at which the electron-hole correlation function saturates. We show that the Kondo temperature exists at any filling of the impurity level. A quasiparticle resonance peak in the spectral function, however, forms only in almost electron-hole symmetric situations. We relate the Kondo temperature with the width of the resonance peak. Finally we discuss the existence of satellite Hubbard bands in the spectral function.
A basis of Bloch waves, distorted locally by the random potential, is introduced for electrons in the Anderson model. Matrix elements of the Hamiltonian between these distorted waves are averages over infinite numbers of independent site-energies, an
The variational cluster approach (VCA) based on the self-energy functional theory is applied to the two-dimensional symmetric periodic Anderson model at half filling. We calculate a variety of physical quantities including the staggered moments and s
Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator transition (AMIT). Critical Power law correlations between electron wave functions at different energies in the vicinity of the AMIT result i
We apply the recently developed dual fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the qualit
The Kondo resonance at the Fermi level is well-established for the electronic structure of Ce (f1 electron) and Yb (f1 hole) based systems. In this work, we report complementary experimental and theoretical studies on the Kondo resonance in Pr-based