ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic Trajectories for Mobility Edges in the Anderson Model

120   0   0.0 ( 0 )
 نشر من قبل Roger Haydock
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A basis of Bloch waves, distorted locally by the random potential, is introduced for electrons in the Anderson model. Matrix elements of the Hamiltonian between these distorted waves are averages over infinite numbers of independent site-energies, and so take definite values rather than distributions of values. The transformed Hamiltonian is ordered, and may be interpreted as an itinerant electron interacting with a spin on each site. In this new basis, the distinction between extended and localized states is clear, and edges of the bands of extended states, the mobility edges, are calculated as a function of disorder. In two dimensions these edges have been found in both analytic and numerical applications of tridiagonalization, but they have not been found in analytic approaches based on perturbation theory, or the single-parameter scaling hypothesis; nor have they been detected in numerical approaches based on scaling or critical distributions of level spacing. In both two and three dimensions the mobility edges in this work are found to separate with increasing disorder for all disorders, in contrast with the results of calculation using numerical scaling for three dimensions. The analytic trajectories are compared with recent results of numerical tridiagonalization on samples of over 10^9 sites. This representation of the Anderson model as an ordered interacting system implies that in addition to transitions at mobility edges, the Anderson model contains weaker transitions characterized by critical disorders where the band of extended states decouples from individual sites; and that singularities in the distribution of site energies, rather than its second moment, determine localization properties of the Anderson model.



قيم البحث

اقرأ أيضاً

The existence of many-body mobility edges in closed quantum systems has been the focus of intense debate after the emergence of the description of the many-body localization phenomenon. Here we propose that this issue can be settled in experiments by investigating the time evolution of local degrees of freedom, tailored for specific energies and initial states. An interacting model of spinless fermions with exponentially long-ranged tunneling amplitudes, whose non-interacting version known to display single-particle mobility edges, is used as the starting point upon which nearest-neighbor interactions are included. We verify the manifestation of many-body mobility edges by using numerous probes, suggesting that one cannot explain their appearance as merely being a result of finite-size effects.
The Kondo and Periodic Anderson Model (PAM) are known to provide a microscopic picture of many of the fundamental properties of heavy fermion materials and, more generally, a variety of strong correlation phenomena in $4f$ and $5f$ systems. In this p aper, we apply the Determinant Quantum Monte Carlo (DQMC) method to include disorder in the PAM, specifically the removal of a fraction $x$ of the localized orbitals. We determine the evolution of the coherence temperature $T^*$, where the local moments and conduction electrons become entwined in a heavy fermion fluid, with $x$ and with the hybridization $V$ between localized and conduction orbitals. We recover several of the principal observed trends in $T^*$ of doped heavy fermions, and also show that, within this theoretical framework, the calculated Nuclear Magnetic Resonance (NMR) relaxation rate tracks the experimentally measured behavior in pure and doped CeCoIn$_5$. Our results contribute to important issues in the interpretation of local probes of disordered, strongly correlated systems.
75 - Longwen Zhou 2021
Non-Hermitian effects could trigger spectrum, localization and topological phase transitions in quasiperiodic lattices. We propose a non-Hermitian extension of the Maryland model, which forms a paradigm in the study of localization and quantum chaos by introducing asymmetry to its hopping amplitudes. The resulting nonreciprocal Maryland model is found to possess a real-to-complex spectrum transition at a finite amount of hopping asymmetry, through which it changes from a localized phase to a mobility edge phase. Explicit expressions of the complex energy dispersions, phase boundaries and mobility edges are found. A topological winding number is further introduced to characterize the transition between different phases. Our work introduces a unique type of non-Hermitian quasicrystal, which admits exactly obtainable phase diagrams, mobility edges, and holding no extended phases at finite nonreciprocity in thermodynamic limit.
103 - V Janis , P. Augustinsky 2007
The low-temperature behavior of the asymmetric single-impurity Anderson model is studied by diagrammatic methods resulting in analytically controllable approximations. We first discuss the ways one can simplify parquet equations in critical regions of singularities in the two-particle vertex. The scale vanishing at the critical point defines the Kondo temperature at which the electron-hole correlation function saturates. We show that the Kondo temperature exists at any filling of the impurity level. A quasiparticle resonance peak in the spectral function, however, forms only in almost electron-hole symmetric situations. We relate the Kondo temperature with the width of the resonance peak. Finally we discuss the existence of satellite Hubbard bands in the spectral function.
The Mott-Anderson transition in the disordered charge-transfer model displays several new features in comparison to what is found in the disordered single-band Hubbard model, as recently demonstrated by large-scale computational (statistical dynamica l mean field theory) studies. Here we show that a much simpler typical medium theory approach (TMT-DMFT) to the same model is able to capture most qualitative and even quantitative aspects of the phase diagram, the emergence of an intermediate electronic Griffiths phase, and the critical behavior close to the metal-insulator transition. Conceptual and mathematical simplicity of the TMT-DMFT formulation thus makes it possible to gain useful new insight into the mechanism of the Mott-Anderson transition in these models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا