ﻻ يوجد ملخص باللغة العربية
Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator transition (AMIT). Critical Power law correlations between electron wave functions at different energies in the vicinity of the AMIT result in the formation of pseudogaps of the local density of states. Magnetic impurities can remain unscreened at such sites. We determine the density of the resulting free magnetic moments in the zero temperature limit. While it is finite on the insulating side of the AMIT, it vanishes at the AMIT, and decays with a power law as function of the distance to the AMIT. Since the fluctuating spins of these free magnetic moments break the time reversal symmetry of the conduction electrons, we find a shift of the AMIT, and the appearance of a semimetal phase. The distribution function of the Kondo temperature $T_{K}$ is derived at the AMIT, in the metallic phase and in the insulator phase. This allows us to find the quantum phase diagram in an external magnetic field $B$ and at finite temperature $T$. We calculate the resulting magnetic susceptibility, the specific heat, and the spin relaxation rate as function of temperature. We find a phase diagram with finite temperature transitions between insulator, critical semimetal, and metal phases. These new types of phase transitions are caused by the interplay between Kondo screening and Anderson localization, with the latter being shifted by the appearance of the temperature-dependent spin-flip scattering rate. Accordingly, we name them Kondo-Anderson transitions (KATs).
Continuous-Time Quantum Monte Carlo (CT-QMC) method combined with Dynamical Mean Field Theory (DMFT) is used to calculate both Periodic Anderson Model (PAM) and Kondo Lattice Model (KLM). Different parameter sets of both models are connected by the S
The low-temperature behavior of the asymmetric single-impurity Anderson model is studied by diagrammatic methods resulting in analytically controllable approximations. We first discuss the ways one can simplify parquet equations in critical regions
The Kondo resonance at the Fermi level is well-established for the electronic structure of Ce (f1 electron) and Yb (f1 hole) based systems. In this work, we report complementary experimental and theoretical studies on the Kondo resonance in Pr-based
It is well-known that magnetic impurities can change the symmetry class of disordered metallic systems by breaking spin and time-reversal symmetry. At low temperature these symmetries can be restored by Kondo screening. It is also known that at the A
Thermodynamic properties are presented for four magnetic impurity models describing delocalized fermions scattering from a localized orbital at an energy-dependent rate $Gamma(epsilon)$ which vanishes precisely at the Fermi level, $epsilon = 0$. Spec