ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical models and the phase ordering kinetics of the s=1 spinor condensate

162   0   0.0 ( 0 )
 نشر من قبل Subroto Mukerjee
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $s=1$ spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We investigate the formation of magnetic domains at finite temperature and magnetic field in two dimensions in an optical trap. We study the general ground state phase diagram of a spin-1 system and focus on a phase that has a magnetic Ising order parameter and numerically determine the nature of the finite temperature superfluid and magnetic phase transitions. We then study three different dynamical models: model A, which has no conserved quantities, model F, which has a conserved second sound mode and the Gross-Pitaevskii (GP) equation which has a conserved density and magnetization. We find the dynamic critical exponent to be the same for models A and F ($z=2$) but different for GP ($z approx 3$). Externally imposed magnetization conservation in models A and F yields the value $z approx 3$, which demonstrates that the only conserved density relevant to domain formation is the magnetization density.



قيم البحث

اقرأ أيضاً

We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each stru cture we discuss the scaling properties and compute the dynamical exponents. We show that the exponent $a_chi$ for the integrated response function, at variance with all the other exponents, is independent on temperature and on the presence of pinning. This universal character suggests a strict relation between $a_chi$ and the topological properties of the networks, in analogy to what observed on regular lattices.
Drawing from exact, approximate and numerical results an overview of the properties of the out of equilibrium response function in phase ordering kinetics is presented. Focusing on the zero field cooled magnetization, emphasis is on those features of this quantity which display non trivial behavior when relaxation proceeds by coarsening. Prominent among these is the dimensionality dependence of the scaling exponent $a_{chi}$ which leads to failure of the connection between static and dynamic properties at the lower dimensionality $d_L$, where $a_{chi}=0$. We also analyse the mean spherical model as an explicit example of a stochastic unstable system, for which the connection between statics and dynamics fails at all dimensionalities.
We observe coherent spin oscillations in an antiferromagnetic spin-1 Bose-Einstein condensate of sodium. The variation of the spin oscillations with magnetic field shows a clear signature of nonlinearity, in agreement with theory, which also predicts anharmonic oscillations near a critical magnetic field. Measurements of the magnetic phase diagram agree with predictions made in the approximation of a single spatial mode. The oscillation period yields the best measurement to date of the sodium spin-dependent interaction coefficient, determining that the difference between the sodium spin-dependent s-wave scattering lengths $a_{f=2}-a_{f=0}$ is $2.47pm0.27$ Bohr radii.
Nearly a quarter of genomic sequences and almost half of all receptors that are likely to be targets for drug design are integral membrane proteins. Understanding the detailed mechanisms of the folding of membrane proteins is a largely unsolved, key problem in structural biology. Here, we introduce a general model and use computer simulations to study the equilibrium properties and the folding kinetics of a $C_{alpha}$-based two helix bundle fragment (comprised of 66 amino-acids) of Bacteriorhodopsin. Various intermediates are identified and their free energy are calculated toghether with the free energy barrier between them. In 40% of folding trajectories, the folding rate is considerably increased by the presence of non-obligatory intermediates acting as traps. In all cases, a substantial portion of the helices is rapidly formed. This initial stage is followed by a long period of consolidation of the helices accompanied by their correct packing within the membrane. Our results provide the framework for understanding the variety of folding pathways of helical transmembrane proteins.
Estimating the homogeneous ice nucleation rate from undercooled liquid water is at the same time crucial for understanding many important physical phenomena and technological applications, and challenging for both experiments and theory. From a theor etical point of view, difficulties arise due to the long time scales required, as well as the numerous nucleation pathways involved to form ice nuclei with different stacking disorders. We computed the homogeneous ice nucleation rate at a physically relevant undercooling for a single-site water model, taking into account the diffuse nature of ice-water interfaces, stacking disorders in ice nuclei, and the addition rate of particles to the critical nucleus.We disentangled and investigated the relative importance of all the terms, including interfacial free energy, entropic contributions and the kinetic prefactor, that contribute to the overall nucleation rate.There has been a long-standing discrepancy for the predicted homogeneous ice nucleation rates, and our estimate is faster by 9 orders of magnitude compared with previous literature values. Breaking down the problem into segments and considering each term carefully can help us understand where the discrepancy may come from and how to systematically improve the existing computational methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا