ﻻ يوجد ملخص باللغة العربية
We observe coherent spin oscillations in an antiferromagnetic spin-1 Bose-Einstein condensate of sodium. The variation of the spin oscillations with magnetic field shows a clear signature of nonlinearity, in agreement with theory, which also predicts anharmonic oscillations near a critical magnetic field. Measurements of the magnetic phase diagram agree with predictions made in the approximation of a single spatial mode. The oscillation period yields the best measurement to date of the sodium spin-dependent interaction coefficient, determining that the difference between the sodium spin-dependent s-wave scattering lengths $a_{f=2}-a_{f=0}$ is $2.47pm0.27$ Bohr radii.
We present measurements and a theoretical model for the interplay of spin dependent interactions and external magnetic fields in atomic spinor condensates. We highlight general features like quadratic Zeeman dephasing and its influence on coherent sp
We consider an antiferromagnetic Bose-Einstein condensate in a traverse magnetic field with a fixed macroscopic magnetization. The system exhibits two different critical behaviors corresponding to transitions from polar to broken-axisymmetry and from
One of the excitements generated by the cold atom systems is the possibility to realize, and explore, varied topological phases stemming from multi-component nature of the condensate. Popular examples are the antiferromagnetic (AFM) and the ferromagn
A spin-1 condensate with antiferromagnetic interactions supports nematic spin vortices in the easy-plane polar phase. These vortices have a $2pi$ winding of the nematic director, with a core structure that depends on the quadratic Zeeman energy. We c
The $s=1$ spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We investigate the formation of magnetic domains at finite temperature and magnetic field in two dimensions in