ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-ordering kinetics on graphs

92   0   0.0 ( 0 )
 نشر من قبل Alessandro Vezzani
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each structure we discuss the scaling properties and compute the dynamical exponents. We show that the exponent $a_chi$ for the integrated response function, at variance with all the other exponents, is independent on temperature and on the presence of pinning. This universal character suggests a strict relation between $a_chi$ and the topological properties of the networks, in analogy to what observed on regular lattices.



قيم البحث

اقرأ أيضاً

We study the phase-ordering kinetics following a temperature quench of O(N) continuous symmetry models with and 4 on graphs. By means of extensive simulations, we show that the global pattern of scaling behaviours is analogous to the one found on usu al lattices. The exponent a for the integrated response function and the exponent z, describing the growing length, are related to the large scale topology of the networks through the spectral dimension and the fractal dimension alone, by means of the same expressions as are provided by the analytic solution of the inifnite N limit. This suggests that the large N value of these exponents could be exact for every N.
Drawing from exact, approximate and numerical results an overview of the properties of the out of equilibrium response function in phase ordering kinetics is presented. Focusing on the zero field cooled magnetization, emphasis is on those features of this quantity which display non trivial behavior when relaxation proceeds by coarsening. Prominent among these is the dimensionality dependence of the scaling exponent $a_{chi}$ which leads to failure of the connection between static and dynamic properties at the lower dimensionality $d_L$, where $a_{chi}=0$. We also analyse the mean spherical model as an explicit example of a stochastic unstable system, for which the connection between statics and dynamics fails at all dimensionalities.
The $s=1$ spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We investigate the formation of magnetic domains at finite temperature and magnetic field in two dimensions in an optical trap. We study the general ground state phase diagram of a spin-1 system and focus on a phase that has a magnetic Ising order parameter and numerically determine the nature of the finite temperature superfluid and magnetic phase transitions. We then study three different dynamical models: model A, which has no conserved quantities, model F, which has a conserved second sound mode and the Gross-Pitaevskii (GP) equation which has a conserved density and magnetization. We find the dynamic critical exponent to be the same for models A and F ($z=2$) but different for GP ($z approx 3$). Externally imposed magnetization conservation in models A and F yields the value $z approx 3$, which demonstrates that the only conserved density relevant to domain formation is the magnetization density.
We review understanding of kinetics of fluid phase separation in various space dimensions. Morphological differences, percolating or disconnected, based on overall composition in a binary liquid or density in a vapor-liquid system, have been pointed out. Depending upon the morphology, various possible mechanisms and corresponding theoretical predictions for domain growth are discussed. On computational front, useful models and simulation methodologies have been presented. Theoretically predicted growth laws have been tested via molecular dynamics simulations of vapor-liquid transitions. In case of disconnected structure, the mechanism has been confirmed directly. This is a brief review on the topic for a special issue on coarsening dynamics, expected to appear in Comptes Rendus Physique.
We studied the non-equilibrium dynamics of the q-state Potts model in the square lattice, after a quench to sub-critical temperatures. By means of a continuous time Monte Carlo algorithm (non-conserved order parameter dynamics) we analyzed the long t erm behavior of the energy and relaxation time for a wide range of quench temperatures and system sizes. For q>4 we found the existence of different dynamical regimes, according to quench temperature range. At low (but finite) temperatures and very long times the Lifshitz-Allen-Cahn domain growth behavior is interrupted with finite probability when the system stuck in highly symmetric non-equilibrium metastable states, which induce activation in the domain growth, in agreement with early predictions of Lifshitz [JETP 42, 1354 (1962)]. Moreover, if the temperature is very low, the system always gets stuck at short times in a highly disordered metastable states with finite life time, which have been recently identified as glassy states. The finite size scaling properties of the different relaxation times involved, as well as their temperature dependency are analyzed in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا