ﻻ يوجد ملخص باللغة العربية
Drawing from exact, approximate and numerical results an overview of the properties of the out of equilibrium response function in phase ordering kinetics is presented. Focusing on the zero field cooled magnetization, emphasis is on those features of this quantity which display non trivial behavior when relaxation proceeds by coarsening. Prominent among these is the dimensionality dependence of the scaling exponent $a_{chi}$ which leads to failure of the connection between static and dynamic properties at the lower dimensionality $d_L$, where $a_{chi}=0$. We also analyse the mean spherical model as an explicit example of a stochastic unstable system, for which the connection between statics and dynamics fails at all dimensionalities.
We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each stru
The $s=1$ spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We investigate the formation of magnetic domains at finite temperature and magnetic field in two dimensions in
We determine the nonlocal stress autocorrelation tensor in an homogeneous and isotropic system of interacting Brownian particles starting from the Smoluchowski equation of the configurational probability density. In order to relate stresses to partic
Behavior of two-time autocorrelation during the phase separation in solid binary mixtures are studied via numerical solutions of the Cahn-Hilliard equation as well as Monte Carlo simulations of the Ising model. Results are analyzed via state-of-the-a
We extend the early time ordering theory of Cahn, Hilliard, and Cook (CHC) so that our generalized theory applies to solid-to-solid transitions. Our theory involves spatial symmetry breaking (the initial phase contains a symmetry not present in the