ترغب بنشر مسار تعليمي؟ اضغط هنا

Nearly Singular Magnetic Fluctuations in the Normal State of a High-T_c Cuprate Superconductor

115   0   0.0 ( 0 )
 نشر من قبل Thom Mason
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Aeppli




اسأل ChatGPT حول البحث

Polarized and unpolarized neutron scattering was used to measure the wave vector- and frequency-dependent magnetic fluctuations in the normal state (from the superconducting transition temperature, T_c=35, up to 350 K) of single crystals of La_{1.86}Sr_{0.14}CuO_4. The peaks which dominate the fluctuations have amplitudes that decrease as T^{-2} and widths that increase in proportion to the thermal energy, k_B T (where k_B is Boltzmanns constant), and energy transfer added in quadrature. The nearly singular fluctuations are consistent with a nearby quantum critical point.



قيم البحث

اقرأ أيضاً

104 - B. Lake 1999
A notable aspect of high-temperature superconductivity in the copper oxides is the unconventional nature of the underlying paired-electron state. A direct manifestation of the unconventional state is a pairing energy - that is, the energy required to remove one electron from the superconductor - that varies (between zero and a maximum value) as a function of momentum or wavevector: the pairing energy for conventional superconductors is wavevector-independent. The wavefunction describing the superconducting state will include not only the pairing of charges, but also of the spins of the paired charges. Each pair is usually in the form of a spin singlet, so there will also be a pairing energy associated with transforming the spin singlet into the higher energy spin triplet form without necessarily unbinding the charges. Here we use inelastic neutron scattering to determine the wavevector-dependence of spin pairing in La_{2-x}Sr_xCuO_4, the simplest high-temperature superconductor. We find that the spin pairing energy (or spin gap) is wavevector independent, even though superconductivity significantly alters the wavevector dependence of the spin fluctuations at higher energies.
The role of charge order in the phase diagram of high temperature cuprate superconductors has been recently re-emphasized by the experimental discovery of an incipient bi-directional charge density wave (CDW) phase in a class of underdoped cuprates. In a subset of the experiments, the CDW has been found to be accompanied by a d-wave intra-unit-cell form factor, indicating modulation of charge density on the oxygen orbitals sandwiched between neighboring Cu atoms on the CuO planes (the so-called bond-density wave (BDW) phase). Here we take a mean field Q_1=(2pi/3,0) and Q_2=(0,2pi/3) bi-directional BDW phase with a d-wave form factor, which closely resembles the experimentally observed charge ordered states in underdoped cuprates, and calculate the Fermi surface topology and the resulting quasiparticle Nernst coefficient as a function of temperature and doping. We establish that, in the appropriate doping ranges where the low temperature phase (in the absence of superconductivity) is a BDW, the Fermi surface consists of an electron and a hole pocket, resulting in a low temperature negative Nernst coefficient as observed in experiments.
Planar normal state resistivity data taken from three families of cuprate superconductors are compared with theoretical calculations from the recent extremely correlated Fermi liquid theory (ECFL). The two hole doped cuprate materials $LSCO$ and $BSL CO$ and the electron doped material $LCCO$ have yielded rich data sets at several densities $delta$ and temperatures T, thereby enabling a systematic comparison with theory. The recent ECFL resistivity calculations for the highly correlated $t$-$t$-$J$ model by us give the resistivity for a wide set of model parameters. After using X-ray diffraction and angle resolved photoemission data to fix parameters appearing in the theoretical resistivity, only one parameter, the magnitude of the hopping $t$, remains undetermined. For each data set, the slope of the experimental resistivity at a single temperature-density point is sufficient to determine $t$, and hence the resistivity on absolute scale at all remaining densities and temperatures. This procedure is shown to give a fair account of the entire data.
In the stripe-ordered state of a strongly-correlated two-dimensional electronic system, under a set of special circumstances, the superconducting condensate, like the magnetic order, can occur at a non-zero wave-vector corresponding to a spatial peri od double that of the charge order. In this case, the Josephson coupling between near neighbor planes, especially in a crystal with the special structure of La_{2-x}Ba_xCuO_4, vanishes identically. We propose that this is the underlying cause of the dynamical decoupling of the layers recently observed in transport measurements at x=1/8.
We have performed a detailed study of Cu $2p$ core-level spectra in single layer La$_{2-x}$Sr$_{x}$CuO$_{4}$, La doped Bi$_2$Sr$_{1.6}$La$_{0.4}$CuO$_{6+delta}$ (Bi2201) and bilayer Bi$_2$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ (Bi2212) high-temperature supe rconductors by using hard x-ray photoemission (HX-PES). We identify the Cu$^{2+}$ derived (i) the Zhang-Rice singlet (ZRS) feature, (ii) the $d^{n+1}underline{L}$ (ligand screened) feature, (iii) the $d^{n}$ satellite feature, as well as the hole-doping derived high binding energy feature in the main peak. In Bi-based cuprates, intensities of the $d^{n}$ satellite features seem to be strongly enhanced compared to La$_{2-x}$Sr$_{x}$CuO$_{4}$. From x-ray photon energy dependent measurements, it is shown that the increased intensity in the satellite region is associated with Bi $4s$ core-level spectral intensity. The corrected $d^{n}$ satellite intensity is independent of the doping content or number of Cu-O layers. Our results suggest a correlation of the relative intensity of ZRS feature and hole-doping induced high binding energy spectral changes in the main peak with superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا