ﻻ يوجد ملخص باللغة العربية
A notable aspect of high-temperature superconductivity in the copper oxides is the unconventional nature of the underlying paired-electron state. A direct manifestation of the unconventional state is a pairing energy - that is, the energy required to remove one electron from the superconductor - that varies (between zero and a maximum value) as a function of momentum or wavevector: the pairing energy for conventional superconductors is wavevector-independent. The wavefunction describing the superconducting state will include not only the pairing of charges, but also of the spins of the paired charges. Each pair is usually in the form of a spin singlet, so there will also be a pairing energy associated with transforming the spin singlet into the higher energy spin triplet form without necessarily unbinding the charges. Here we use inelastic neutron scattering to determine the wavevector-dependence of spin pairing in La_{2-x}Sr_xCuO_4, the simplest high-temperature superconductor. We find that the spin pairing energy (or spin gap) is wavevector independent, even though superconductivity significantly alters the wavevector dependence of the spin fluctuations at higher energies.
Polarized and unpolarized neutron scattering was used to measure the wave vector- and frequency-dependent magnetic fluctuations in the normal state (from the superconducting transition temperature, T_c=35, up to 350 K) of single crystals of La_{1.86}
In the stripe-ordered state of a strongly-correlated two-dimensional electronic system, under a set of special circumstances, the superconducting condensate, like the magnetic order, can occur at a non-zero wave-vector corresponding to a spatial peri
Relationship between the superconducting gap and the pseudogap has been the subject of controversies. In order to clarify this issue, we have studied the superconducting gap and pseudogap of the high-Tc superconductor La2-xSrxCuO4 (x=0.10, 0.14) by a
Extensive Cu-NMR studies on multilayered high-Tc cuprates have deduced the following results;(1) Antiferromagnetic (AFM) moment M_{AFM} is decreased with doping, regardless of the number of CuO_2 layers n, and collapses around a carrier density N_h =
We report the magnetic susceptibility and the magnetization under pressures up to 1.7GPa above the critical pressure, Pc ~ 1.5GPa, for H // a, b, c-axes in the novel spin triplet superconductor UTe2. The anisotropic magnetic susceptibility at low pre