كيفية التكيف بشكل فعال طرازات الترجمة الآلية (NMT) وفقا للحالات الناشئة دون إعادة التدريب؟على الرغم من النجاح الكبير للترجمة الآلية العصبية، فإن تحديث النماذج المنتشرة عبر الإنترنت لا تزال تحديا.الأساليب غير المعلمة القائمة التي تسترجع الأمثلة المماثلة من قاعدة بيانات لتوجيه عملية الترجمة تعد واعدة ولكنها عرضة للإفراط في الأمثلة المستردة.ومع ذلك، فإن الأساليب غير المعلمة عرضة للإفراط في الأمثلة المستردة.في هذا العمل، نقترح تعلم الترجمة المنحزة بالنواة مع استعادة مثال (Kster)، وهي طريقة فعالة لتكييف نماذج الترجمة الآلية العصبية عبر الإنترنت.تظهر التجارب في مجال تكيف المجال ومجموعات بيانات الترجمة متعددة المجالات أنه حتى دون إعادة تدريب باهظة الثمن، فإن KTERS قادرة على تحقيق تحسن قدره 1.1 إلى 1.5 درجات بلو عبر أفضل طرق التكيف الموجودة عبر الإنترنت.يتم إصدار الرمز والنماذج المدربة في https://github.com/jiangqn/kster.
How to effectively adapt neural machine translation (NMT) models according to emerging cases without retraining? Despite the great success of neural machine translation, updating the deployed models online remains a challenge. Existing non-parametric approaches that retrieve similar examples from a database to guide the translation process are promising but are prone to overfit the retrieved examples. However, non-parametric methods are prone to overfit the retrieved examples. In this work, we propose to learn Kernel-Smoothed Translation with Example Retrieval (KSTER), an effective approach to adapt neural machine translation models online. Experiments on domain adaptation and multi-domain machine translation datasets show that even without expensive retraining, KSTER is able to achieve improvement of 1.1 to 1.5 BLEU scores over the best existing online adaptation methods. The code and trained models are released at https://github.com/jiangqn/KSTER.
المراجع المستخدمة
https://aclanthology.org/
ينشأ التعلم القليل من الرصاص في سيناريوهات عملية مهمة، كما هو الحال عندما يحتاج نظام فهم اللغة الطبيعية إلى تعلم ملصقات دلالية جديدة للنشاط الناشئ والموارد النادر. في هذه الورقة، نستكشف الأساليب القائمة على استرجاع مهام تعبئة النوايا وملء الفتحات في
شاركنا في جميع المسارات لمهمة الترجمة الآلية ل WMT 2021: وحدة المعالجة المركزية ذات CPU أحادية النواة، وحدة المعالجة المركزية متعددة النواة، وأجهزة GPU مع شروط الإنتاجية والكمولية.تجمع تقاريرنا العديد من استراتيجيات الكفاءة: تقطير المعرفة، وحدة فك تر
نحن نحقق في التعلم التحويل بناء على نماذج الترجمة الآلية المدربة مسبقا للترجمة بين (الموارد المنخفضة) اللغات المشابهة.هذا العمل هو جزء من مساهمتنا في المهمة المشتركة لغات WMT 2021 بمثابة مهمة مشتركة حيث أرسلنا نماذج لأزواج اللغة المختلفة، بما في ذلك
تعلم الترجمة الآلية العصبية متعددة اللغات (MNMT) ترجمة أزواج متعددة اللغات بنموذج واحد، يحتمل أن يحسن كل من الدقة وكفاءة الذاكرة للنماذج المنتشرة. ومع ذلك، فإن عدم اختلال البيانات الثقيلة بين اللغات يعوق النموذج من الأداء بشكل موحد عبر أزواج اللغة. ف
عند بناء أنظمة الترجمة الآلات، يحتاج المرء في كثير من الأحيان إلى الاستفادة القصوى من مجموعات غير متجانسة من البيانات الموازية في التدريب، والتعامل مع المدخلات بقوة من المجالات غير المتوقعة في الاختبار.جذبت هذا السيناريو متعدد المجالات الكثير من العم