تعلم Word Ageddings تحيزات ضمنية من العظميات اللغوية التي تم التقاطها إحصائيات Word في حدوثها. من خلال تمديد الطرق التي تقيس تحيزات تشبه الإنسان في Word Embeddings، نقدم Valnorm، وهي مهمة وطريقة تقييم جوهرية جديدة لتحديد البعد الافتراضي للتأثير في مجموعات الكلمة المصنوعة من البشرية من علم النفس الاجتماعي. نحن نطبق Valnorm على Adgeddings كلمة ثابتة من سبع لغات (الصينية والإنجليزية والألمانية والبولندية والبرتغالية والإسبانية والتركية) من النص الإنجليزي التاريخي الممتد إلى 200 عام. يحقق Valnorm دقة عالية باستمرار في تحديد تكاليف مجموعات كلمات المجموعة غير التمييزية وغير الاجتماعية. على وجه التحديد، يحقق Valnorm ترابط بيرسون ل R = 0.88 لعشرات الحكم البشري من التكافؤ لمدة 399 كلمة تم جمعها لإنشاء معايير ممتعة باللغة الإنجليزية. على النقيض من ذلك، نقيس القوالب النمطية الجنسانية باستخدام نفس مجموعة من embeddings Word وتجد أن التحيزات الاجتماعية تختلف عبر اللغات. تشير نتائجنا إلى أن جمعيات التكافؤ في كلمات الفريق غير التمييزية غير التمييزية تمثل جمعيات مشتركة على نطاق واسع، بسب سبع لغات وأكثر من 200 عام.
Word embeddings learn implicit biases from linguistic regularities captured by word co-occurrence statistics. By extending methods that quantify human-like biases in word embeddings, we introduce ValNorm, a novel intrinsic evaluation task and method to quantify the valence dimension of affect in human-rated word sets from social psychology. We apply ValNorm on static word embeddings from seven languages (Chinese, English, German, Polish, Portuguese, Spanish, and Turkish) and from historical English text spanning 200 years. ValNorm achieves consistently high accuracy in quantifying the valence of non-discriminatory, non-social group word sets. Specifically, ValNorm achieves a Pearson correlation of r=0.88 for human judgment scores of valence for 399 words collected to establish pleasantness norms in English. In contrast, we measure gender stereotypes using the same set of word embeddings and find that social biases vary across languages. Our results indicate that valence associations of non-discriminatory, non-social group words represent widely-shared associations, in seven languages and over 200 years.
المراجع المستخدمة
https://aclanthology.org/
كيف تشرح بيل غيتس إلى الألمانية؟يرتبط بتأسيس شركة في الولايات المتحدة، لذلك ربما يمكن للمؤسس الألماني كارل بنز أن يقف في البوابات في تلك السياقات.يسمى هذا النوع من الترجمة التكيف في مجتمع الترجمة.حتى الآن، لم تتم هذه المهمة بشكل حسابي.يمكن استخدام ال
تعتمد أنظمة متعددة اللغات متعددة اللغات على المفردات المشتركة التي تغطي جميع اللغات التي تغطي بما فيه الكفاية. تحقيقا لهذه الغاية، فإن النهج البسيط والمستعمل بشكل متكرر يستفيد من مفهليات الكلمات الفرعية التي تم إنشاؤها بشكل مشترك على عدة لغات. نحن نف
لوحظت نماذج الترجمة الآلية العصبية (NMT) لإنتاج ترجمات سيئة عندما يكون هناك عدد قليل من الجمل / لا توجد جمل متوازية لتدريب النماذج. في حالة عدم وجود بيانات متوازية، تحولت عدة طرق إلى استخدام الصور لتعلم الترجمات. نظرا لأن صور الكلمات، على سبيل المثال
في حين أن العواطف جوانب عالمية لعلم النفس البشري، يتم التعبير عنها بشكل مختلف عبر لغات وثقافات مختلفة.نقدم مجموعة بيانات جديدة من أكثر من 530K منشورات عامة من الفيسبوك المجففة في 18 لغة، والتي تحمل تصنيفها بخمس عواطف مختلفة.باستخدام Asbeddings Bert م
أظهرت الدراسات الحديثة أن النماذج المتبادلة المدربة مسبقا تحقق أداء مثير للإعجاب في المهام المتقاطعة المتبادلة. يستفيد هذا التحسن من تعلم كمية كبيرة من مونوللقي والموازيات. على الرغم من أنه من المعترف به عموما أن شركة فورانيا الموازية أمر بالغ الأهمي