ترغب بنشر مسار تعليمي؟ اضغط هنا

Valnorm يحدد دلالات للكشف عن تحيزات التكافؤ متسقة عبر اللغات وعدد القرون

ValNorm Quantifies Semantics to Reveal Consistent Valence Biases Across Languages and Over Centuries

258   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعلم Word Ageddings تحيزات ضمنية من العظميات اللغوية التي تم التقاطها إحصائيات Word في حدوثها. من خلال تمديد الطرق التي تقيس تحيزات تشبه الإنسان في Word Embeddings، نقدم Valnorm، وهي مهمة وطريقة تقييم جوهرية جديدة لتحديد البعد الافتراضي للتأثير في مجموعات الكلمة المصنوعة من البشرية من علم النفس الاجتماعي. نحن نطبق Valnorm على Adgeddings كلمة ثابتة من سبع لغات (الصينية والإنجليزية والألمانية والبولندية والبرتغالية والإسبانية والتركية) من النص الإنجليزي التاريخي الممتد إلى 200 عام. يحقق Valnorm دقة عالية باستمرار في تحديد تكاليف مجموعات كلمات المجموعة غير التمييزية وغير الاجتماعية. على وجه التحديد، يحقق Valnorm ترابط بيرسون ل R = 0.88 لعشرات الحكم البشري من التكافؤ لمدة 399 كلمة تم جمعها لإنشاء معايير ممتعة باللغة الإنجليزية. على النقيض من ذلك، نقيس القوالب النمطية الجنسانية باستخدام نفس مجموعة من embeddings Word وتجد أن التحيزات الاجتماعية تختلف عبر اللغات. تشير نتائجنا إلى أن جمعيات التكافؤ في كلمات الفريق غير التمييزية غير التمييزية تمثل جمعيات مشتركة على نطاق واسع، بسب سبع لغات وأكثر من 200 عام.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

كيف تشرح بيل غيتس إلى الألمانية؟يرتبط بتأسيس شركة في الولايات المتحدة، لذلك ربما يمكن للمؤسس الألماني كارل بنز أن يقف في البوابات في تلك السياقات.يسمى هذا النوع من الترجمة التكيف في مجتمع الترجمة.حتى الآن، لم تتم هذه المهمة بشكل حسابي.يمكن استخدام ال تكيف التلقائي في معالجة اللغة الطبيعية للترجمة الآلية وغير مباشرة لتوليد سؤالا جديدا يرد على مجموعات البيانات والتعليم.نقترح طريقتان تلقائيا ومقارنتها عن نتائج بشرية لهذه المهمة الرواية NLP الرواية.أولا، تتكيف قاعدة المعرفة المهيكلة الكيانات المسماة باستخدام خصائصها المشتركة.ثانيا، أساليب تعيينات التضمين الحسابية والمتعاملة التعاملية تحدد المرشحين أفضل، ولكن على حساب الميزات القابلة للتفسير.نقيم أساليبنا من خلال مجموعة بيانات جديدة من التكيف البشري.
تعتمد أنظمة متعددة اللغات متعددة اللغات على المفردات المشتركة التي تغطي جميع اللغات التي تغطي بما فيه الكفاية. تحقيقا لهذه الغاية، فإن النهج البسيط والمستعمل بشكل متكرر يستفيد من مفهليات الكلمات الفرعية التي تم إنشاؤها بشكل مشترك على عدة لغات. نحن نف ترض أن مثل هذه المفردات هي فرعية نفسها بسبب الإيجابيات الخاطئة (الكلمات الفرعية المماثلة مع معاني مختلفة عبر اللغات) والسلبيات الخاطئة (كلمات فرعية مختلفة مع معاني مماثلة). لمعالجة هذه المشكلات، نقترح رسم الخرائط عن طريق الكلمات الفرعية ومثبتة عبر اللغات (SMALA)، وهي طريقة لبناء مخصصات الكلمات الفرعية ثنائية اللغة. تقوم SMALA باستخراج محاذاة الكلمات الفرعية باستخدام تقنية رسم الخرائط غير المزودة بعملية رسم الخرائط واستخدامها لإنشاء مراسي عبر اللغات بناء على أوجه تشابه الكلمات الفرعية. نوضح فوائد SMALA للاستدلال اللغوي للغة الطبيعية المتبادلة (XNLI)، حيث يحسن تحويل صفرية إلى لغة غير مرئية دون بيانات مهمة، ولكن فقط من خلال تقاسم تضييق الكلمات الفرعية. علاوة على ذلك، في الترجمة الآلية العصبية، نوضح أن مفردات الكلمة الفرعية المشتركة التي تم الحصول عليها مع Smala تؤدي إلى أعلى درجات بلو على أحكام تحتوي على العديد من الإيجابيات الخاطئة والسلبيات الخاطئة.
لوحظت نماذج الترجمة الآلية العصبية (NMT) لإنتاج ترجمات سيئة عندما يكون هناك عدد قليل من الجمل / لا توجد جمل متوازية لتدريب النماذج. في حالة عدم وجود بيانات متوازية، تحولت عدة طرق إلى استخدام الصور لتعلم الترجمات. نظرا لأن صور الكلمات، على سبيل المثال ، قد لا تتغير الحصان عبر اللغات، يمكن تحديد الترجمات عبر الصور المرتبطة بالكلمات بلغات مختلفة تحتوي على درجة عالية من التشابه البصري. ومع ذلك، تم عرض ترجمة عبر الصور تتحسن عند نماذج النص فقط بشكل هامشي. لفهم أفضل عندما تكون الصور مفيدة للترجمة، ندرس صورة ترجمتها للكلمات، والتي نحددها كترجمة الكلمات عبر الصور، من خلال قياس أوجه التشابه بين المعلومات بين التصنيفات للكلمات التي ترجمات من بعضها البعض. نجد أن صور الكلمات ليست دائما ثابتة عبر اللغات، وأن أزواج اللغة ذات الثقافة المشتركة، والتي تعني إما عائلة لغة مشتركة أو عرقية أو دين، قد تحسنت إمكانية تحسن الصور (أي صور مشابهة للكلمات المماثلة) يحادثون، بغض النظر عن قربهم الجغرافي. بالإضافة إلى ذلك، تمشيا مع الأعمال السابقة التي تظهر الصور تساعد المزيد في ترجمة الكلمات الملموسة، وجدنا أن الكلمات الملموسة قد تحسنت إمكانية الحصول على صورة حسب الاقتضاء.
في حين أن العواطف جوانب عالمية لعلم النفس البشري، يتم التعبير عنها بشكل مختلف عبر لغات وثقافات مختلفة.نقدم مجموعة بيانات جديدة من أكثر من 530K منشورات عامة من الفيسبوك المجففة في 18 لغة، والتي تحمل تصنيفها بخمس عواطف مختلفة.باستخدام Asbeddings Bert م تعدد اللغات، نوضح أن العواطف يمكن استنتاجها بشكل موثوق في الداخل وبين اللغات.يعد التعلم الصفرية النتائج الواعدة لغات الموارد المنخفضة.بعد النظريات المعمارية للعواطف الأساسية، نقدم تحليلا مفصلا لإمكانيات وحدود تصنيف العاطفة عبر اللغات.نجد أن التشابه الهيكلية والنظامي بين اللغات يسهل التعلم عبر اللغات، بالإضافة إلى التنوع اللغوي لبيانات التدريب.تشير نتائجنا إلى أن هناك القواسم المشتركة وراء التعبير عن العاطفة بلغات مختلفة.نطلق علنا البيانات المجهولية للبحث في المستقبل.
أظهرت الدراسات الحديثة أن النماذج المتبادلة المدربة مسبقا تحقق أداء مثير للإعجاب في المهام المتقاطعة المتبادلة. يستفيد هذا التحسن من تعلم كمية كبيرة من مونوللقي والموازيات. على الرغم من أنه من المعترف به عموما أن شركة فورانيا الموازية أمر بالغ الأهمي ة لتحسين الأداء النموذجي، فإن الأساليب الحالية غالبا ما تكون مقيدة بحجم Corpora المتوازي، خاصة لغات الموارد المنخفضة. في هذه الورقة، نقترح Ernie-M، وهي طريقة تدريب جديدة تشجع النموذج على محاذاة تمثيل لغات متعددة مع شركة أحادية الأحادية، للتغلب على القيد أن أماكن حجم Corpus الموازي على الأداء النموذجي. إن رؤيتنا الرئيسية هي دمج الترجمة الخلفي في عملية التدريب المسبق. نحن نولد أزواج جملة زائفة بالموازاة على كائن أحادي مونولينغ لتمكين تعلم المحاذاات الدلالية بين لغات مختلفة، وبالتالي تعزيز النمذجة الدلالية للنماذج المتبقية. تظهر النتائج التجريبية أن Ernie-M يتفوق على النماذج الحالية عبر اللغات الحالية ويوفر نتائج حالة جديدة من بين الفنين في مختلف مهام المصب عبر اللغات. سيتم إجراء الرموز والنماذج المدربة مسبقا متاحة للجمهور.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا