تعتمد معالجة اللغة الطبيعية (NLP) بشكل متزايد على الأنظمة العامة المناسبة التي تحتاج إلى التعامل مع العديد من الظواهر اللغوية المختلفة والفروق الدقيقة. على سبيل المثال، يتعين على نظام الاستدلال باللغة الطبيعية (NLI) أن يتعرف على المعنويات، والتعامل مع الأرقام، وإجراء حلول، وما إلى ذلك. لا تزال حلولنا للمشاكل المعقدة بعيدة عن الكمال، لذلك من المهم إنشاء أنظمة يمكن أن تتعلم تصحيح الأخطاء بسرعة، تدريجيا، ومع القليل من البيانات التدريبية. في هذا العمل، نقترح مهمة التعلم القليلة المستمرة (CFL)، حيث يتم الطعن للنظام بظاهرة صعبة وطلب منهم أن يتعلموا تصحيح الأخطاء مع أمثلة تدريبية فقط (10 إلى 15). تحقيقا لهذه الغاية، نقوم أولا بإنشاء معايير بناء على البيانات المشروحة مسبقا: DetaSets NLI (Anli and Snli) ومجموعات بيانات تحليل المشاعر (IMDB). بعد ذلك، نقدم خطوط أساس مختلفة من النماذج المتنوعة (على سبيل المثال، أخطاقات علم الذاكرة والشبكات النموذجية) ومقارنتها في التعلم القليل من الطلقات والكم من إعدادات التعلم القليلة المستمرة. إن مساهماتنا هي في إنشاء بروتوكول جناح وتقييم معيار لاستمرار التعلم القليل من الرصاص حول مهام تصنيف النص، وعمل العديد من الملاحظات المثيرة للاهتمام حول سلوك الأساليب القائمة على التشابه. نأمل أن يعمل عملنا كنقطة انطلاق مفيدة للعمل في المستقبل على هذا الموضوع الهام.
Natural Language Processing (NLP) is increasingly relying on general end-to-end systems that need to handle many different linguistic phenomena and nuances. For example, a Natural Language Inference (NLI) system has to recognize sentiment, handle numbers, perform coreference, etc. Our solutions to complex problems are still far from perfect, so it is important to create systems that can learn to correct mistakes quickly, incrementally, and with little training data. In this work, we propose a continual few-shot learning (CFL) task, in which a system is challenged with a difficult phenomenon and asked to learn to correct mistakes with only a few (10 to 15) training examples. To this end, we first create benchmarks based on previously annotated data: two NLI (ANLI and SNLI) and one sentiment analysis (IMDB) datasets. Next, we present various baselines from diverse paradigms (e.g., memory-aware synapses and Prototypical networks) and compare them on few-shot learning and continual few-shot learning setups. Our contributions are in creating a benchmark suite and evaluation protocol for continual few-shot learning on the text classification tasks, and making several interesting observations on the behavior of similarity-based methods. We hope that our work serves as a useful starting point for future work on this important topic.
المراجع المستخدمة
https://aclanthology.org/
تحقق هذه الورقة في فعالية التدريب المسبق لتصنيف قلة الطابع القليلة.في حين أن النماذج الحالية عادة ما تكون هناك مزيد من النماذج اللغوية السابقة لما قبل التدريب مثل Bert على كمية شاسعة من Corpus غير المسبق، فإننا نجد أنها فعالة للغاية وكفاءة ببساطة Bri
البشر قادرون على تعلم مفاهيم جديدة من أمثلة قليلة جدا؛ في المقابل، تحتاج خوارزميات التعلم في الآلة الحديثة عادة الآلاف من الأمثلة للقيام بذلك. في هذه الورقة، نقترح خوارزمية لتعلم مفاهيم جديدة من خلال تمثيلها كبرامج بشأن المفاهيم القائمة. وبهذه الطريق
تعد تصنيف النوايا (IC) وملء الفتحات (SF) لبنات بناء مهمة في أنظمة الحوار الموجهة نحو المهام. هذه المهامتين مرتبطان ارتباطا وثيقا ويمكن أن تزدهر بعضهما البعض. نظرا لأن عدد قليل فقط من الكلام، يمكن استخدامها لتحديد النوايا والفتحات الجديدة الناشئة، وغا
يهدف التعلم التعريف إلى تحسين قدرات النموذج على تعميم المهام والمجالات الجديدة. منعت عدم وجود طريقة فعالة للبيانات لإنشاء مهام التدريب META قد منع تطبيق التعلم التلوي لسيناريوهات التعلم القليلة في العالم الحقيقي. اقترحت الدراسات الحديثة مناهج غير مده
القدرة على توسيع المعرفة باستمرار مع مرور الوقت واستخدامها للتعميم السريع للمهام الجديدة هي سمة رئيسية لاستخبارات اللغوية البشرية. ومع ذلك، فإن النماذج الموجودة التي تتابع التعميم السريع لمهام جديدة (على سبيل المثال، طرق تعلم قليلة بالرصاص) تتدرب في