نحن نتطلع إلى تحيز أخذ العينات والقضايا الخارجية في عدد قليل من التعلم عن اكتشاف الحدث، وهو متعقب فرعي لاستخراج المعلومات.نقترح نموذج العلاقات بين المهام التدريبية في التعلم القليل من الرصاص البارز من خلال إدخال نماذج النماذج عبر المهام.ونحن نقترح كذلك فرض اتساق التنبؤ بين المصنفين عبر المهام لجعل النموذج أكثر قوة على القيم المتطرفة.تظهر تجربتنا الواسعة تحسنا ثابتا على ثلاث مجموعات من مجموعات بيانات التعلم قليلة.تشير النتائج إلى أن نموذجنا هو أكثر قوة عند وصف بيانات المسمى لأنواع الأحداث الرواية محدودة.يتوفر شفرة المصدر على http://github.com/laiviet/fsl-proact.
We address the sampling bias and outlier issues in few-shot learning for event detection, a subtask of information extraction. We propose to model the relations between training tasks in episodic few-shot learning by introducing cross-task prototypes. We further propose to enforce prediction consistency among classifiers across tasks to make the model more robust to outliers. Our extensive experiment shows a consistent improvement on three few-shot learning datasets. The findings suggest that our model is more robust when labeled data of novel event types is limited. The source code is available at http://github.com/laiviet/fsl-proact.
المراجع المستخدمة
https://aclanthology.org/
تأثرت الكشف عن الحدث منذ فترة طويلة بسبب لعنة الزناد: التجاوز الزنجي سيضر بالقدرة على مستوى التعميم أثناء تقديره سيضر بأداء الكشف.هذه المشكلة أكثر حدة في سيناريو أقل لقطة.في هذه الورقة، نحدد وحل مشكلة لعنة المشغل في اكتشاف حدث قليل الطواف (FSED) من و
يمكن للكشف عن الموقف على وسائل التواصل الاجتماعي المساعدة في تحديد وفهم الأخبار أو التعليق المائل في الحياة اليومية.في هذا العمل، نقترح نموذجا جديدا للكشف عن موقف صفرية على Twitter يستخدم التعلم الخصم للتعميم عبر الموضوعات.ينص نموذجنا على الأداء الحد
نحن نتطلع إلى مهمة اكتشاف الكلام الكراهية التلقائي لغات الموارد المنخفضة.بدلا من جمع وإشراف بيانات خطاب الكراهية الجديدة، نوضح كيفية استخدام التعلم عبر التحويلات عبر اللغات للاستفادة من البيانات الموجودة بالفعل من لغات الموارد العالية.باستخدام مصنفات
يمكن للبشر التمييز بين فئات جديدة بكفاءة للغاية مع عدد قليل من الأمثلة، إلى حد كبير بسبب حقيقة أن البشر يمكنهم الاستفادة من المعرفة التي تم الحصول عليها من المهام ذات الصلة.ومع ذلك، يميل نموذج تصنيف النص في التعلم العميق إلى الكفاح لتحقيق أداء مرض عن
مجردة معظم مجموعات مهام NLP والأصناف اللغوية تفتقر إلى أمثلة في المجال للتدريب الخاضع للإشراف بسبب قلة البيانات المشروحة. كيف يمكن النماذج العصبية أن تجعل تعميمات فعالة للعينة من مجموعات لغات المهام مع البيانات المتاحة للموارد المنخفضة؟ في هذا العمل،