ترغب بنشر مسار تعليمي؟ اضغط هنا

الترجمة الآلية العصبية غير الخاضعة لها مع قواعد اللغة العالمية

Unsupervised Neural Machine Translation with Universal Grammar

448   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعتمد الترجمة الآلية عادة على Corpora الموازي لتوفير إشارات متوازية للتدريب.جلبت ظهور الترجمة الآلية غير المنشورة ترجمة آلة بعيدا عن هذا الاعتماد، على الرغم من أن الأداء لا يزال يتخلف عن الترجمة التقليدية للإشراف الآلية.في الترجمة الآلية غير المنشورة، يسعى النموذج إلى أوجه تشابه لغة متماثلة كمصدر للإشارة الموازية الضعيفة لتحقيق الترجمة.إن نظرية تشومسكي العالمي النجمية تفترض أن القواعد هي شكل فطري من المعرفة للبشر ويحكمها المبادئ والقيود العالمية.لذلك، في هذه الورقة، نسعى إلى الاستفادة من هذه الأدلة القواعد المشتركة لتوفير إشارات متوازية لغة أكثر صراحة لتعزيز تدريب نماذج الترجمة الآلية غير المنشورة.من خلال تجارب على أزواج لغة متعددة النموذجية، نوضح فعالية مناهجنا المقترحة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حققت الترجمة الآلية العصبية غير التلقائية، التي تتحلل الاعتماد على الرموز المستهدفة السابقة من مدخلات وحدة فك التشفير، تسريع استنتاج مثير للإعجاب ولكن بتكلفة الدقة السفلى. Works السابق توظف فك تشفير تكريري لتحسين الترجمة عن طريق تطبيق تكرارات تحسين م تعددة. ومع ذلك، فإن العيب الخطير هو أن هذه الأساليب تعرض الضعف الخطير في الاعتراف بقطع الترجمة الخاطئة. في هذه الورقة، نقترح بنية المعمارية المسماة rewritenat للتعلم صراحة إعادة كتابة قطع الترجمة الخاطئة. على وجه التحديد، يستخدم ReWritEnat وحدة تحديد المواقع لتحديد موقع تلك الخاطئة، والتي يتم تنقيحها بعد ذلك في الوحدة النمطية الصحيحة. نحو الحفاظ على اتساق توزيع البيانات مع فك التشفير التكراري، يتم استخدام استراتيجية تدريبية تكرارية لزيادة تحسين قدرة إعادة كتابة. تظهر تجارب واسعة أجريت على العديد من المعايير المستخدمة على نطاق واسع أن إعادة البيع يمكن أن تحقق أداء أفضل مع تقليل وقت فك التشفير بشكل كبير، مقارنة باستراتيجيات فك التشفير السابقة السابقة. على وجه الخصوص، يمكن إعادة كتابة النتائج التنافسية مع الترجمة التلقائية على معايير الترجمة AutoreGressive على معايير الترجمة WMT14 EN-DE، EN-FR و WMT16 RO-en.
في الآونة الأخيرة، تم اقتراح عدد من الأساليب لتحسين أداء الترجمة للترجمة الآلية العصبية على مستوى المستند (NMT). ومع ذلك، فإن القليل من التركيز على موضوع تناسق الترجمة المعجمية. في هذه الورقة، نطبق ترجمة واحدة لكل خطاب "في NMT، وتهدف إلى تشجيع تناسق الترجمة المعجمية ل NMT على مستوى المستند. تتم ثم نشجع ترجمة هذه الكلمات داخل رابط لتكون متسقة بطريقتين. من ناحية، عند ترميز الجمل داخل وثيقة نتخذها بشكل صحيح معلومات السياق من هذه الكلمات. من ناحية أخرى، نقترح وظيفة خسارة مساعدة إلى تقييد أفضل أن ترجمتهم يجب أن تكون متسقة. النتائج التجريبية على الصينية english والإنجليزية → توضح مهام الترجمة الفرنسية أن نهجنا لا يحقق فقط الأداء الحديث في درجات بلو، ولكن أيضا يحسن إلى حد كبير الاتساق المعجمي في الترجمة.
يتم استخدام أخذ العينات المجدولة على نطاق واسع للتخفيف من مشكلة تحيز التعرض الترجمة الآلية العصبية. الدافع الأساسي هو محاكاة مشهد الاستدلال أثناء التدريب من خلال استبدال الرموز الأرضية مع الرموز الرائعة المتوقعة، وبالتالي سد الفجوة بين التدريب والاست دلال. ومع ذلك، فإن أخذ العينات المقررة للفانيليا تعتمد فقط على خطوات التدريب وعادل على قدم المساواة جميع خطوات فك التشفير. وهي تحاكي مشهد الاستدلال بمعدلات خطأ موحدة، والتي تفحص مشهد الاستدلال الحقيقي، حيث توجد خطوات فك التشفير الكبيرة عادة معدلات خطأ أعلى بسبب تراكم الخطأ. لتخفيف التناقض أعلاه، نقترح أساليب أخذ العينات المجدولة بناء على خطوات فك التشفير، مما يزيد من فرصة اختيار الرموز المتوقعة مع نمو خطوات فك التشفير. وبالتالي، يمكننا أن نحاكي أكثر واقعية المشهد الاستدلال أثناء التدريب، وبالتالي سد الفجوة بشكل أفضل بين التدريب والاستدلال. علاوة على ذلك، نحقق في أخذ العينات المجدولة بناء على كل من خطوات التدريب وفك تشفير الخطوات لمزيد من التحسينات. تجريبيا، فإن نهجنا تتفوق بشكل كبير على خط الأساس المحول وأخذ عينات من الفانيليا المجدولة على ثلاث مهام WMT واسعة النطاق. بالإضافة إلى ذلك، تعميم نهجنا أيضا بشكل جيد لمهمة تلخيص النص على معايير شعبية.
أصبحت الترجمة المرجودة (BT) واحدة من مكونات الأمر الواقع في الترجمة الآلية العصبية غير المنشأة (UNMT)، ويجعل صراحة لديها القدرة على الترجمة. ومع ذلك، يتم التعامل مع جميع النصوص الثنائية الزائفة التي تم إنشاؤها بواسطة BT بنفس القدر كبيانات نظيفة أثناء التحسين دون النظر في تنوع الجودة، مما يؤدي إلى التقارب البطيء وأداء الترجمة المحدود. لمعالجة هذه المشكلة، نقترح طريقة تعلم المناهج الدراسية للاستفادة تدريجيا من النصوص الثنائية الزائفة القائمة على جودتها من التعبيات المتعددة. على وجه التحديد، نقوم أولا بتطبيق تضمين كلمة crosslingual لحساب صعوبة الترجمة المحتملة (الجودة) للجمل الأولية. بعد ذلك، يتم تغذية الجمل في برنامج التعريف الخاص ب UNMT من السهل إلى الدفعة الصلبة عن طريق الدفعة. علاوة على ذلك، بالنظر إلى جودة الجمل / الرموز في دفعة معينة هي متنوعة أيضا، فإننا نتخذ النموذج نفسه لحساب درجات الجودة المحبوبة بشكل جيد، والتي يتم تقديمها كعامل تعليمي لموازنة مساهمات أجزاء مختلفة عند فقد الحوسبة وتشجيعها نموذج UNMT للتركيز على البيانات الزائفة بجودة أعلى. النتائج التجريبية على WMT 14 EN-FR، WMT 14 EN-DE، WMT 16 EN-RO، و LDC EN-ZH توضح أن الطريقة المقترحة تحقق تحسينات ثابتة مع سرعة التقارب الأسرع.
تقدم الورقة تجارب في الترجمة الآلية العصبية مع القيود المعجمية في لغة غنية مورمية.على وجه الخصوص، نقدم طريقة واستنادا إلى فك التشفير المقيد والتي تتعامل مع الأشكال المصدرة للإدخالات المعجمية ولا تتطلب أي تعديل بيانات التدريب أو الهندسة المعمارية النم وذجية.لتقييم فعاليتها ونقوم بإجراء تجارب في سيناريوهات مختلفة: عام ومخصص خاص.قارنا طريقنا مع ترجمة خط الأساس، وهي ترجمة بدون قيود معجمية ومن حيث سرعة الترجمة وجودة الترجمة.لتقييم مدى جودة معالجة القيود ونقترح مقاييس تقييم جديدة تأخذ في الاعتبار وجود وتنسيب وازدواجية وصحة الانهيار المصطلحات المعجمية في جملة الإخراج.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا