ترغب بنشر مسار تعليمي؟ اضغط هنا

طرح كل شيء: توليد أسئلة سياقية لأي دور دالسي

Asking It All: Generating Contextualized Questions for any Semantic Role

300   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

طرح الأسئلة حول الموقف هو خطوة متأصلة نحو فهمها.تحقيقا لهذه الغاية، نقدم مهمة توليد السؤال، والتي، بالنظر إلى ذكر مسند، تتطلب مقطع، إنتاج مجموعة من الأسئلة التي تسأل عن جميع الأدوار الدلالية المحتملة للمسند.نقوم بتطوير نموذج مرحلتين لهذه المهمة، التي تنتج أولا نموذجا سؤالا مستقلا عن السياق لكل دور ثم بمرجعه من المناسب للسياق للمرور.على عكس معظم الأساليب الموجودة في توليد السؤال، لا يتطلب نهجنا تكييف الإجابات القائمة في النص.بدلا من ذلك، نحن شرطا على نوع المعلومات للاستفسار، بغض النظر عما إذا كانت الإجابة تظهر صراحة في النص، يمكن استنتاجها منه، أو ينبغي البحث عن مكان آخر.يوضح تقييمنا أننا نولد أسئلة متنوعة ومتشددة بشكل جيد لعلم تغطية كبيرة واسعة من الأدوار الأدوار.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

توليد أزواج الإجابة ذات الجودة العالية هي مهمة صلبة ولكنها ذات مغزى. على الرغم من أن الأعمال السابقة قد حققت نتائج رائعة حول توليد الأسئلة على دراية بالإجابة، فمن الصعب تطبيقها في تطبيق عملي في مجال التعليم. تتناول هذه الورقة لأول مرة مهمة توليد زوج الإجابة السؤال في بيانات الفحص العالمي الحقيقي، وتقترح إطارا جديدا جديدا في العرق. لالتقاط المعلومات المهمة لمقطع الإدخال، نقوم أولا بإنشاء أجهزة iTPhragrases (بدلا من استخراج)، وبالتالي يتم تقليل هذه المهمة إلى توليد مشترك مسدد السؤال عن السؤال المجاني. تبعا لذلك، نقترح نموذج اتصالات متعددة الوكيل لتوليد واستفسار الأسئلة والمجاسات القصيرة بشكل متكرر، ثم قم بتطبيق السؤال والمجاسيات المتولدة لتوجيه جيل الإجابات. لإنشاء معيار قوي، نبني نموذجنا على نموذج ما قبل التدريب الجيل القوي. تظهر النتائج التجريبية أن نموذجنا يجعل اختراقات كبيرة في مهمة جيل الإجابة عن السؤال. علاوة على ذلك، فإننا نصنع تحليلا شاملا على طرازنا، مما يشير إلى اتجاهات جديدة لهذه المهمة الصعبة.
يصف استخراج المعلومات عبر اللغات الصفرية (IE) بناء نموذج IE لبعض اللغة المستهدفة، بالنظر إلى التعليقات التوضيحية القائمة حصريا في لغة أخرى، عادة باللغة الإنجليزية. في حين أن تقدم اللوائح المتعددة اللغات المحددة مسبقا يشير إلى تفاؤل سهلة للقطار على ال لغة الإنجليزية، وتشغيل أي لغة ""، نجد من خلال استكشاف شامل وتمديد التقنيات التي تقودها مجموعة من الأساليب، الجديدة القديمة، إلى أداء أفضل من أي استراتيجية واحدة عبر اللغات على وجه الخصوص. نستكشف التقنيات بما في ذلك إسقاط البيانات والتدريب الذاتي، وكيف تأثير المشفرات المختلفة مسبقا تأثيرها. نستخدم English-to-businal IE مثلي الأولي، مما يدل على أداء قوي في هذا الإعداد لاستخراج الأحداث، والتعرف على الكيان المسمى، ووضع علامات جزء من الكلام، وتحليل التبعية. ثم قم بتطبيق إسقاط البيانات والتدريب الذاتي على ثلاثة مهام عبر ثمانية لغات مستهدفة. نظرا لعدم وجود مجموعة واحدة من التقنيات الأفضل عبر جميع المهام، فإننا نشجع الممارسين على استكشاف تكوينات مختلفة للتقنيات الموضحة في هذا العمل عند السعي لتحسين التدريب على الصفر.
يتم إجراء جيل نصي من الرسوم البيانية الدلالية تقليديا مع الطرق الحتمية، والتي تولد وصفا فريدا نظرا رسم بياني للإدخال.ومع ذلك، تعترف مشكلة الجيل مجموعة من النواتج النصية المقبولة، وعرض الاختلاف المعجمي والمنظمات والدلية.لمعالجة هذا الفصل، نقدم مساهمتي ن رئيسيتين.أولا، نقترح نموذج رسم بياني مؤشر استوكاستكي، حيث يتضمن متغير كامنة في نموذج فك الترميز، واستخدامه في مجموعة.ثانيا، لتقييم تنوع الجمل التي تم إنشاؤها، نقترح مقياس التقييم التلقائي الجديد الذي يقيم بشكل مشترك تنوع المخرجات وجودة في إعداد متعدد المراجع.نقيم النماذج على مجموعات بيانات Webnlg باللغة الإنجليزية والروسية، وإظهار مجموعة من نماذج الاستوكاستك تنتج مجموعات متنوعة من الجمل التي تم إنشاؤها أثناء الاستفيؤ بجودة مماثلة لنماذج أحدث من النماذج.
كان هناك تقدم كبير في مجال الإجابة على الأسئلة الاستخراجية (EQA) في السنوات الأخيرة.ومع ذلك، فإن معظمهم يعتمدون على التوضيحية الخاصة بالإجابة في الممرات المقابلة.في هذا العمل، نتعلم مشكلة EQA عندما لا توجد شروح موجودة للإجابة فترة الإجابة، أي، عندما تحتوي DataSet على أسئلة فقط والممرات المقابلة.تعتمد طريقتنا على الترميز التلقائي للسؤال الذي يؤدي سؤالا يرد على المهمة أثناء الترميز ومهمة توليد الأسئلة أثناء فك التشفير.نظهر أن طريقتنا تعمل بشكل جيد في إعداد صفرية ويمكن أن توفر خسارة إضافية لتعزيز الأداء ل EQA.
يبدأ التفكير الاختلافي من بعض الملاحظات ويهدف إلى إيجاد التفسير الأكثر معقولا لهذه الملاحظات. لأداء الاختطاف، غالبا ما يستخدم البشر من الاستدلالات الزمنية والسببية، ومعرفة كيف يمكن أن يؤدي بعض الوضع الافتراضي إلى نتائج مختلفة. يقدم هذا العمل الدراسة الأولى لكيفية تؤثر هذه المعرفة على المهمة NLI المختلة - التي تتكون في اختيار التفسير الأكثر احتمالا لملاحظات معينة. نحن ندرب نموذج اللغة المتخصصة LMI التي يتم تكليفها بإنشاء ما يمكن أن يحدث بعد ذلك من سيناريو افتراضي يتطور من حدث معين. بعد ذلك اقتراح نموذج متعدد المهام MTL لحل المهمة NLI المختلة، والذي يتوقع تفسير معقول من قبل) النظر في الأحداث المحتملة المختلفة الناشئة عن الفرضيات المرشحة - الأحداث الناتجة عن LMI - و B) اختيار واحد أكثر مماثلة إلى النتيجة التي لوحظت. نظهر أن نموذج MTL الخاص بنا يحسن أكثر من LMS من الفانيليا السابقة التي تم تدريبها مسبقا على NLI Paltrack NLI. يشير التقييم والتحليلات اليدوية لدينا إلى أن التعلم عن الأحداث القادمة المحتملة من سيناريوهات افتراضية مختلفة يدعم الاستدلال المختلف.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا