في حين أن مجال نقل النمط (ST) ينمو بسرعة، فقد أعاقه بعدم وجود ممارسات موحدة للتقييم التلقائي.في هذه الورقة، نقوم بتقييم المقاييس التلقائية الرائدة على المهمة التي تم بحثها عن نقل أسلوب الأشكال.على عكس التقييمات السابقة، التي تركز فقط على اللغة الإنجليزية فقط، فإننا نوسع تركيزنا على البرتغالية البرازيلية والفرنسية والإيطالية، مما يجعل هذا العمل أول تقييم متعدد اللغات للمقاييس في القديس.نحن نخوض أفضل الممارسات للتقييم التلقائي في نقل النمط (الشكلية) وتحديد العديد من النماذج التي ترتبط بشكل جيد مع الأحكام البشرية وهي قوية عبر اللغات.نأمل أن يساعد هذا العمل في تسريع التطوير في القديس، حيث يكون التقييم البشري غالبا ما يكون تحديا لجمعه.
While the field of style transfer (ST) has been growing rapidly, it has been hampered by a lack of standardized practices for automatic evaluation. In this paper, we evaluate leading automatic metrics on the oft-researched task of formality style transfer. Unlike previous evaluations, which focus solely on English, we expand our focus to Brazilian-Portuguese, French, and Italian, making this work the first multilingual evaluation of metrics in ST. We outline best practices for automatic evaluation in (formality) style transfer and identify several models that correlate well with human judgments and are robust across languages. We hope that this work will help accelerate development in ST, where human evaluation is often challenging to collect.
المراجع المستخدمة
https://aclanthology.org/
هذه الاستعراضات الورقة وتلخص ممارسات التقييم البشري الموضحة في 97 ورقة نقل النمط فيما يتعلق بثلاثة جوانب التقييم الرئيسية: نقل النمط، والمعنى بالحفظ، والطلاقة.من حيث المبدأ، يجب أن تكون التقييمات من قبل راتبي البشر هي الأكثر موثوقية.ومع ذلك، في أوراق
نأخذ الخطوة الأولى نحو نقل النمط متعدد اللغات عن طريق إنشاء وإطلاق Xformal، وهو معيار من إعادة شحن رسمي متعدد النص غير الرسمي في البرتغالية البرازيلية والفرنسية والإيطالية.تشير النتائج على XFormal إلى أن نهج نقل النمط للحديث أداء قريبة من خطوط الأساس
يعد تقييم جيل اللغة الطبيعي (NLG) مهمة متعددة الأوجه تتطلب تقييم معايير متعددة المرغوبة، على سبيل المثال، الطلاقة، والاستماس، والتغطية، والأهمية، والكفاية، والجودة الكلية، وما إلى ذلك عبر مجموعات البيانات الحالية لمدة 6 مهام NLG، نلاحظ أن درجات التقي
تقوم هذه الدراسات الورقية بالتحويل عبر اللغات الصفرية إلى نماذج لغة الرؤية. على وجه التحديد، نركز على البحث عن نص متعدد اللغات والفيديو واقتراح نموذجا يستند إلى المحولات التي تتعلم أن تضمينات السياق متعددة اللغات متعددة اللغات. تحت إعداد طلقة صفرية،
تستند نماذج نقل النمط غير المزروعة بشكل رئيسي إلى نهج التعلم الاستقرائي، والذي يمثل النمط كمعلمات أو معلمات فك الترميز، أو معلمات تمييزية، وتطبق مباشرة هذه القواعد العامة لحالات الاختبار. ومع ذلك، فإن عدم وجود Corpus الموازي يعيق قدرة طرق التعلم الاس