نما خطاب الكراهية بشكل كبير على وسائل التواصل الاجتماعي، مما تسبب في عواقب وخيمة على ضحايا جميع التركيبة السكانية.على الرغم من الاهتمام بالكثير من الاهتمام لتوصيف واكتشاف الكلام التمييزي، ركز معظم الأعمال على خطاب الكراهية الصريح أو الصريح، وفشل في معالجة شكل أكثر انتشارا يستند إلى لغة مشفرة أو غير مباشرة.لملء هذه الفجوة، يقدم هذا العمل تصنيفا مبررا من الناحية النظرية لخطاب الكراهية الضمنية والجورتين القياسي مع ملصقات جيدة المحبوب لكل رسالة وتضليلها.نقدم تحليلات منهجية لمجموعة البيانات الخاصة بنا باستخدام خطوط الأساس المعاصرة للكشف عن خطاب الكراهية الضمني، ونناقش الميزات الرئيسية التي تحدي النماذج الحالية.ستستمر هذه البيانات في العمل بمثابة معيار مفيد لفهم هذه المشكلة متعددة الأوجه.
Hate speech has grown significantly on social media, causing serious consequences for victims of all demographics. Despite much attention being paid to characterize and detect discriminatory speech, most work has focused on explicit or overt hate speech, failing to address a more pervasive form based on coded or indirect language. To fill this gap, this work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message and its implication. We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech, and we discuss key features that challenge existing models. This dataset will continue to serve as a useful benchmark for understanding this multifaceted issue.
المراجع المستخدمة
https://aclanthology.org/
نحن ندرس فائدة ميزات المعدات الباردة لتحديد نوع وهدف خطاب الكراهية في تعليقات Facebook الهولندية.لهذا الغرض، تم تفاح جميع الاستعارات البغيضة في كوربوس الهولندية Lilah Corpus وتفسيرها بما يتماشى مع نظرية الاستعارة المفاهيمية وتحليل الاستعارة الحرج.نحن
تقلص نهج التحيز مع اعتماد النماذج على ميزات البيانات الحساسة للبيانات، مثل رموز المجموعة الاجتماعية (SGTS)، مما يؤدي إلى تنبؤات متساوية عبر الميزات الحساسة.ومع ذلك، في الكشف عن الكلام الكراهية، قد يتجاهل تكالير التعادل النموذجي الاختلافات المهمة بين
نحن نتطلع إلى مهمة اكتشاف الكلام الكراهية التلقائي لغات الموارد المنخفضة.بدلا من جمع وإشراف بيانات خطاب الكراهية الجديدة، نوضح كيفية استخدام التعلم عبر التحويلات عبر اللغات للاستفادة من البيانات الموجودة بالفعل من لغات الموارد العالية.باستخدام مصنفات
يفترض العمل الحالي على تصنيف نطق الكراهية الآلي أن DataSet ثابتة ويتم تعريف الفصول الدراسية مسبقا.ومع ذلك، فإن مقدار البيانات في وسائل التواصل الاجتماعي يزيد كل يوم، وتتغير الموضوعات الساخنة بسرعة، مما يتطلب من المصنفين أن تكون قادرة على التكيف باستم
نقدم نظاما للصفر بالرصاص لغة هجومية عبر اللغات وتصنيف الكلام الكراهية.تم تدريب النظام على مجموعات البيانات الإنجليزية واختباره في مهمة اكتشاف محتوى خطاب الكراهية والوسائط الاجتماعية الهجومية في عدد من اللغات دون أي تدريب إضافي.تظهر التجارب قدرة رائعة