تقدم هذه الورقة ترميز تصحيح ذاتي (SECOCO)، وهو إطار يتعامل بشكل فعال مع المدخلات الصاخبة للترجمة الآلية العصبية القوية عن طريق إدخال تنبؤ تصحيح ذاتي.تختلف عن الأساليب القوية السابقة، تمكن SECOCO NMT من تصحيح المدخلات الصاخبة بشكل صريح وحذف أخطاء محددة في وقت واحد مع عملية فك تشفير الترجمة.SECOCO قادرة على تحقيق تحسينات كبيرة على خطوط أساس قوية على مجموعتين لاختبار العالم الحقيقي ومجموعة بيانات معيار WMT مع إمكانية الترجمة الترجمة جيدة.سنجعل كودنا ومجموعات البيانات متاحة للجمهور قريبا.
This paper presents Self-correcting Encoding (Secoco), a framework that effectively deals with noisy input for robust neural machine translation by introducing self-correcting predictors. Different from previous robust approaches, Secoco enables NMT to explicitly correct noisy inputs and delete specific errors simultaneously with the translation decoding process. Secoco is able to achieve significant improvements over strong baselines on two real-world test sets and a benchmark WMT dataset with good interpretability. We will make our code and dataset publicly available soon.
المراجع المستخدمة
https://aclanthology.org/
لقد تم الاعتراف على نطاق واسع بأن معلومات بناء الجملة يمكن أن تساعد في أنظمة الترجمة الآلية العصبية في نهاية إلى نهادة لتحقيق ترجمة أفضل. من أجل دمج معلومات التبعية في NMT المحول، النهج الحالية إما استغلال العلاقات المعتمدة في الرأس المحلية، تجاهل جي
في التعلم الخاضع للإشراف، يجب أن يكون نموذج مدرب جيدا قادرا على استعادة الحقيقة الأرضية بدقة، أي التسميات المتوقعة من المتوقع أن تشبه تسميات الحقيقة الأرضية قدر الإمكان.مستوحاة من ذلك، فإننا صياغة معيارا صعوبة بناء على درجات الاسترداد من أمثلة التدري
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا
أسئلة البحث الحديثة أهمية الاهتمام الذاتي لمنتج المنتج في نماذج المحولات ويظهر أن معظم رؤساء الاهتمام تعلم أنماطا موضعية بسيطة. في هذه الورقة، ندفع أبعد من ذلك في خط البحث هذا واقتراح آلية بديلة جديدة عن النفس: الاهتمام المتكرر (ران). تتعلم RAN بشكل
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت