ما قبل التدريب (PT) والترجمة الخلفي (BT) هي طريقتان بسيطان وقويهما لاستخدام البيانات الأولية لتحسين الأداء النموذجي للترجمة الآلية العصبية (NMT).تأخذ هذه الورقة الخطوة الأولى للتحقيق في التكامل بين PT و BT.نقدم اثنين من المهام التحقيق الخاصة ب PT و BT على التوالي وتجد أن PT يساهم بشكل أساسي في وحدة التشفير أثناء قيام BT بتجلب المزيد من الفوائد إلى وحدة فك الترميز.تظهر النتائج التجريبية أن PT و BT مكملة بشكل جيد مع بعضها البعض، وإنشاء عروض أحدث على المعايير WMT16 الإنجليزية والرومانية والروسية.من خلال تحليلات واسعة النطاق على عصالة الجملة وتيرة الكلمة، فإننا نوضح أيضا أن الجمع بين الموسومة BT مع PT هو أكثر فائدة تكاملها، مما يؤدي إلى جودة ترجمة أفضل.شفرة المصدر متاحة بحرية في HTTPS://github.com/sunbowliu/ptvsbt.
Pre-training (PT) and back-translation (BT) are two simple and powerful methods to utilize monolingual data for improving the model performance of neural machine translation (NMT). This paper takes the first step to investigate the complementarity between PT and BT. We introduce two probing tasks for PT and BT respectively and find that PT mainly contributes to the encoder module while BT brings more benefits to the decoder. Experimental results show that PT and BT are nicely complementary to each other, establishing state-of-the-art performances on the WMT16 English-Romanian and English-Russian benchmarks. Through extensive analyses on sentence originality and word frequency, we also demonstrate that combining Tagged BT with PT is more helpful to their complementarity, leading to better translation quality. Source code is freely available at https://github.com/SunbowLiu/PTvsBT.
المراجع المستخدمة
https://aclanthology.org/
حققت الترجمة الآلية العصبية غير الخاضعة للرقابة (UNMT) التي تعتمد فقط على Glassive Monolingual Corpora نتائج ملحوظة في العديد من مهام الترجمة.ومع ذلك، في سيناريوهات العالم الواقعي، لا توجد سورانيا أحادية الأبعاد الضخمة لبعض لغات الموارد المنخفضة للغا
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا
أسئلة البحث الحديثة أهمية الاهتمام الذاتي لمنتج المنتج في نماذج المحولات ويظهر أن معظم رؤساء الاهتمام تعلم أنماطا موضعية بسيطة. في هذه الورقة، ندفع أبعد من ذلك في خط البحث هذا واقتراح آلية بديلة جديدة عن النفس: الاهتمام المتكرر (ران). تتعلم RAN بشكل
تهدف ترجمة جهاز الوثائق إلى ترجمة جملة المصدر إلى اللغة المستهدفة بحضور معلومات سياقية إضافية.ومع ذلك، فإنه يعاني عادة من نقص البيانات ثنائية اللغة الوثيقة.لعلاج هذا، هنا نقترح نهجا ما قبل السياق البسيط والفعال في السياق، والذي يستحق الاستفادة من كور
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت