إن معرفة البرامج النصية سلاسل الأحداث المشتركة في السيناريوهات النمطية، هي أصول قيمة لأنظمة فهم اللغة الطبيعية الموجهة نحو المهام.نقترح مهمة بناء البرنامج النصي الموجهة نحو الأهداف، حيث ينتج نموذج سلسلة من الخطوات لإنجاز هدف معين.نحن نعارض مهمتنا في أول مجموعة بيانات تعليمية متعددة اللغات متعددة اللغات تدعم 18 لغة تم جمعها من Wikihow، وهو موقع على شبكة الإنترنت يحتوي على نصف مليون حول المقالات.بالنسبة إلى الأساس، نفكر في نهج قائم على الجيل باستخدام نموذج لغة ونهج يستند إلى استرجاعه من خلال استرداد الخطوات ذات الصلة لأول مرة من بركة مرشحة كبيرة ثم طلبها.نظرا لأن مهمتنا عملية، غير ممكنة ولكن صعبة النماذج المحولات الحديثة، وأن طرقنا يمكن نشرها بسهولة لمختلف مجموعات البيانات والمجالات الأخرى مع أداء طلقة صفرية لائقة.
The knowledge of scripts, common chains of events in stereotypical scenarios, is a valuable asset for task-oriented natural language understanding systems. We propose the Goal-Oriented Script Construction task, where a model produces a sequence of steps to accomplish a given goal. We pilot our task on the first multilingual script learning dataset supporting 18 languages collected from wikiHow, a website containing half a million how-to articles. For baselines, we consider both a generation-based approach using a language model and a retrieval-based approach by first retrieving the relevant steps from a large candidate pool and then ordering them. We show that our task is practical, feasible but challenging for state-of-the-art Transformer models, and that our methods can be readily deployed for various other datasets and domains with decent zero-shot performance.
المراجع المستخدمة
https://aclanthology.org/
في أنظمة الحوار الموجهة نحو الأهداف، يقدم المستخدمون المعلومات من خلال قيم الفتحة لتحقيق أهداف محددة. عمليا، يمكن أن تكون بعض مجموعات قيم الفتحة غير صالحة وفقا للمعرفة الخارجية. على سبيل المثال، مزيج من بيتزا الجبن "(عنصر القائمة) وملفات تعريف الارتب
إن القدرة على التباين في استخدام اللغة ضروري للمتحدثين لتحقيق أهدافهم المحادثة، على سبيل المثال عند الإشارة إلى الكائنات في البيئات المرئية.نقول أن التنوع لا ينبغي أن يكون على غرار كهدف مستقل في الحوار، ولكن يجب أن يكون نتيجة لذلك أو منتج ثاني لتوليد
لكل مهمة حوار موجهة نحو تحقيق الأهداف ذات أهمية، يجب جمع كميات كبيرة من البيانات للحصول على التعلم المنتهي للنظام الحوار العصبي.جمع هذه البيانات هي عملية مكلفة وتستغرق وقتا طويلا.بدلا من ذلك، نوضح أنه يمكننا استخدام كمية صغيرة فقط من البيانات، والتي
يسمح التعلم المستمر في أنظمة الحوار الموجهة نحو المهام للنظام بإضافة مجالات ووظائف جديدة للعمل الإضافي بعد النشر، دون تكبد التكلفة العالية لإعادة النظر في النظام بأكمله في كل مرة. في هذه الورقة، نقترح أول معيار تعلم مستمر على الإطلاق لأنظمة الحوار ال
نقترح مشكلة جديدة في مجال التعلم المنتهي في نهاية الحوار الموجهة نحو الوظيفة (TOD)، حيث يحاكي نظام مربع الحوار وكيل استكشاف الأخطاء وإصلاحها يساعد المستخدم من خلال تشخيص مشكلتهم (على سبيل المثال، السيارة لا تبدأ).ترتكز حوارات هذه الحوار في مخططات الم