ترغب بنشر مسار تعليمي؟ اضغط هنا

ترجمة مقلوبة ترجمة خطاب قوية

Inverted Projection for Robust Speech Translation

398   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقوم أنظمة الترجمة التقليدية المدربين على وثائق مكتوبة بشكل جيد للترجمة المستندة إلى النصوص ولكن ليس كذلك للتطبيقات المستندة إلى الكلام.نحن نهدف إلى تكييف نماذج الترجمة إلى الكلام عن طريق إدخال أخطاء معجمية حقيقية من أخطاء ASR والتجزئة من علامات الترقيم التلقائية في بيانات تدريب الترجمة الخاصة بنا.نقدم نهج إسقاط مقلوب تم اكتشافه تلقائيا شرائح النظام تلقائيا على النصوص البشرية ومن ثم إعادة الشرائح ترجمة الذهب إلى محاذاة النصوص الإنسانية المتوقعة.نوضح أن هذا يتغلب على عدم تطابق اختبار القطار الموجود في نهج التدريب الأخرى.يحقق نهج الإسقاط الجديد مكاسب أكثر من 1 نقطة بلو على خط أساس يتعرض للنصوص البشرية والجزء، وهذه المكاسب تعقد لكلا بيانات IWSLT وبيانات YouTube.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعلم الترجمة الآلية العصبية متعددة اللغات (MNMT) ترجمة أزواج متعددة اللغات بنموذج واحد، يحتمل أن يحسن كل من الدقة وكفاءة الذاكرة للنماذج المنتشرة. ومع ذلك، فإن عدم اختلال البيانات الثقيلة بين اللغات يعوق النموذج من الأداء بشكل موحد عبر أزواج اللغة. ف ي هذه الورقة، نقترح هدفا تعليميا جديدا ل MNMT بناء على التحسين القوي التويضي، مما يقلل من الخسارة المتوقعة الأسوأ في مجموعة أزواج اللغة. نوضح كذلك كيفية تحسين هذا الهدف من الناحية العملية للترجمة الكبيرة باستخدام مخطط أفضل استجابة مزخرف، وهو فعاليتان فعالة وتتحمل تكلفة حسابية إضافية ضئيلة مقارنة بقليل المخاطر التجريبية القياسية. نقوم بإجراء تجارب مكثفة على ثلاث مجموعات من اللغات من مجموعة بيانات وتظهر أن طريقتنا تتفوق باستمرار على أساليب خطية قوية من حيث المتوسط ​​والأداء لكل لغة تحت كلا من إعدادات الترجمة متعددة إلى واحدة وواحدة متعددة.
مع زيادة الصوت في مجال الاتصالات، فإن الحاجة إلى ترجمات حية في الأحداث متعددة اللغات هي أكثر أهمية من أي وقت مضى. في محاولة لأتمتة العملية، نهدف إلى استكشاف جدوى ترجمة الكلام في وقت واحد (Simulst) للترجمة الحية. ومع ذلك، فإن معدل توليد Word-For-Word من أنظمة Simulst غير مثلى لعرض الترجمات بطريقة مفهومة وقابلة للقراءة. في هذا العمل، نقوم بتكييف Simulst Systems للتنبؤ برصيد الترجمة إلى جانب الترجمة. بعد ذلك، نقترح وضع العرض الذي يستغل بنية الاستراحة المتوقعة عن طريق تقديم الترجمات في خطوط التمرير. قارنا وضعنا المقترح مع شاشة 1) Word-for-word و 2) في كتل، من حيث سرعة القراءة والتأخير. تظهر التجارب على ثلاث أزواج اللغة (en → IT، DE، FR) أن خطوط التمرير هي الوضع الوحيد الذي يحقق سرعة قراءة مقبولة مع الحفاظ على التأخير بالقرب من عتبة 4 ثانية. نجرب أن الترجمة الفورية للترجمات الحية القابلة للقراءة لا تزال تواجه تحديات، والثيقة هي ذات جودة ترجمة ضعيفة، واقتراح توجيهات بحث في المستقبل.
تصف هذه الورقة مشاركة جامعة ماستريخت في مسار الترجمة متعددة اللغات في IWSLT 2021.المهمة في هذه المسار هي بناء أنظمة ترجمة خطاب متعددة اللغات في اتجاهات تحت إشراف ومطلة الصفر.نظامنا الأساسي هو نموذج نهاية إلى نهاية يؤدي إلى نسخ الكلام والترجمة.نلاحظ أ ن التدريب المشترك للمهامتين مكملتين خاصة عندما تكون بيانات ترجمة الكلام نادرة.على المصدر والجانب المستهدف، نستخدم تكبير البيانات والملصقات الزائفة على التوالي لتحسين أداء أنظمتنا.نقدم أيضا تقنية كفرية تعمل باستمرار على تحسين جودة النسخ والترجمات.تظهر التجارب أن النظام المنتهي تنافسية مع نظيره المتتالي وخاصة في ظروف الطلقة الصفرية.
تحتوي هذه الورقة على وصف لتقديم معهد Karlsruhe للتكنولوجيا (KIT) لمهمة ترجمة TEDX متعددة اللغات في حملة تقييم IWSLT 2021.نهجنا الرئيسي هو تطوير كل من النظم المتتالية ونظم نهاية إلى نهاية وتجمع بينها في نهاية المطاف لتحقيق أفضل النتائج الممكنة لهذا ال إعداد المنخفض للغاية الموارد.يؤكد التقرير أيضا تحسين بعض التحسن المعماري المتسق إضافته إلى بنية المحولات، لجميع المهام: ترجمة الترجمة والنسخ والنطق.
في هذه الورقة، وصفنا تقديم جامعة تشجيانغ إلى مهمة ترجمة الكلام متعددة اللغات IWSLT2021.تركز هذه المهمة على بحث ترجمة الكلام (ST) عبر العديد من لغات المصدر غير الإنجليزية.يمكن للمشاركين أن يقرروا ما إذا كانوا سيعملون على أنظمة مقيدة أو أنظمة غير مقيدة يمكنها استخدام البيانات الخارجية.نقوم بإنشاء أنظمة مقيدة للترجمة المتتالية والإنغانية في النهاية، باستخدام البيانات المقدمة فقط.في النهج المتتالي، نجمع بين التعرف على الكلام التلقائي في المطابقة (ASR) مع الترجمة الآلية العصبية القائمة على المحولات (NMT).تستخدم أنظمة الترجمة المباشرة المناسبة للكلام المباشرة في تشفير الأساس ومكتشف متعددة المهام.تم فركة الأنظمة المقدمة من قبل نماذج متتالية مختلفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا