في أنظمة الحوار، يقوم مكون فهم اللغة الطبيعي (NLU) عادة بقرار التفسير (بما في ذلك المجال، النية والفتحات) عن كلام قبل حل الكيانات المذكورة.قد ينتج عن هذا أخطاء تصنيف النوايا وعلامات الفتحة.في هذا العمل، نقترح نفايات ميزات دقة الكيان (ER) في NLU Reranking وإدخال مصطلح خسائر رواية بناء على إشارات إيه لتحسين تعلم الأوزان النموذجية في إطار إعادة النشر.بالإضافة إلى ذلك، للحصول على سيناريو حوار متعدد المجالات، نقترح طريقة مطابقة توزيع النتيجة لضمان درجات الناتجة عن نماذج Reranking NLU من النطاقات المختلفة معايرة بشكل صحيح.في التجارب دون اتصال بالإنترنت، نوضح نهجنا المقترح تفوق بشكل كبير على نموذج خط الأساس على كل من تقييمات المجال الواحدة والعبر.
In dialog systems, the Natural Language Understanding (NLU) component typically makes the interpretation decision (including domain, intent and slots) for an utterance before the mentioned entities are resolved. This may result in intent classification and slot tagging errors. In this work, we propose to leverage Entity Resolution (ER) features in NLU reranking and introduce a novel loss term based on ER signals to better learn model weights in the reranking framework. In addition, for a multi-domain dialog scenario, we propose a score distribution matching method to ensure scores generated by the NLU reranking models for different domains are properly calibrated. In offline experiments, we demonstrate our proposed approach significantly outperforms the baseline model on both single-domain and cross-domain evaluations.
المراجع المستخدمة
https://aclanthology.org/
في حين أن التعرف على الكيان المسمى (NER) من الكلام كان موجودا طالما أن NER من نص مكتوب لديه، فإن دقة NER من الكلام كانت أيضا أقل بكثير من NER من النص. يبرز ارتفاع شعبية أنظمة الحوار المنطوقة مثل Siri أو Alexa الحاجة إلى أكثر دقة من الكلام من الكلام ل
يعد عدم وجود بيانات تدريبية المسمى للميزات الجديدة مشكلة شائعة في أنظمة الحوار في العالم الحقيقي المتغيرة بسرعة.كحل، نقترح نموذج توليد إعادة صياغة متعددة اللغات يمكن استخدامه لإنشاء كلمات جديدة للميزة المستهدفة واللغة المستهدفة.يمكن استخدام الكلام ال
عند بناء أنظمة الترجمة الآلات، يحتاج المرء في كثير من الأحيان إلى الاستفادة القصوى من مجموعات غير متجانسة من البيانات الموازية في التدريب، والتعامل مع المدخلات بقوة من المجالات غير المتوقعة في الاختبار.جذبت هذا السيناريو متعدد المجالات الكثير من العم
إن دمج مصادر المعرفة الخارجية بفعالية في المحادثات هي مشكلة طويلة الأمد في أبحاث الحوار مفتوح المجال. إن الأدبيات الموجودة على اختيار المعرفة المفتوحة للمجال محدود ويقتصر بعض الافتراضات الهشة على مصادر المعرفة لتبسيط المهمة الشاملة، مثل وجود عقوبة مع
إن إزالة الكيانات المسماة (NED)، والتي تنطوي على رسم الخرائط النصية للكيانات الهيكلية، تحديا بشكل خاص في المجال الطبي بسبب وجود كيانات نادرة.تقتصر الأساليب الحالية بوجود الموارد الهيكلية الخشونة في قواعد المعرفة الطبية الحيوية وكذلك استخدام مجموعات ا