ترغب بنشر مسار تعليمي؟ اضغط هنا

تحسين إعادة تأهب NLU باستخدام إشارات دقة الكيان في أنظمة حوار متعددة المجال

Optimizing NLU Reranking Using Entity Resolution Signals in Multi-domain Dialog Systems

253   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في أنظمة الحوار، يقوم مكون فهم اللغة الطبيعي (NLU) عادة بقرار التفسير (بما في ذلك المجال، النية والفتحات) عن كلام قبل حل الكيانات المذكورة.قد ينتج عن هذا أخطاء تصنيف النوايا وعلامات الفتحة.في هذا العمل، نقترح نفايات ميزات دقة الكيان (ER) في NLU Reranking وإدخال مصطلح خسائر رواية بناء على إشارات إيه لتحسين تعلم الأوزان النموذجية في إطار إعادة النشر.بالإضافة إلى ذلك، للحصول على سيناريو حوار متعدد المجالات، نقترح طريقة مطابقة توزيع النتيجة لضمان درجات الناتجة عن نماذج Reranking NLU من النطاقات المختلفة معايرة بشكل صحيح.في التجارب دون اتصال بالإنترنت، نوضح نهجنا المقترح تفوق بشكل كبير على نموذج خط الأساس على كل من تقييمات المجال الواحدة والعبر.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في حين أن التعرف على الكيان المسمى (NER) من الكلام كان موجودا طالما أن NER من نص مكتوب لديه، فإن دقة NER من الكلام كانت أيضا أقل بكثير من NER من النص. يبرز ارتفاع شعبية أنظمة الحوار المنطوقة مثل Siri أو Alexa الحاجة إلى أكثر دقة من الكلام من الكلام ل أن NER هو مكون أساسي لفهم ما قاله المستخدمون في الحوار. تتلقى أنظمة الحوار المنطوقة المنطوقة إدخال المستخدم في شكل نصوص التعرف على الكلام التلقائي (ASR)، وببساطة تطبيق نموذج NER المدربين على النص المكتوب إلى نصوص ASR غالبا ما يؤدي إلى دقة منخفضة لأنها مقارنة بالنص المكتبكي، تفتقر نصوص ASR إلى إشارات مهمة مثل علامات الترقيم والرسملة. علاوة على ذلك، فإن الأخطاء في نصوص العصر تجعل أيضا NER من الكلام الصعب. نقترح نماذجين تستغلوا أدلة سياق الحوار ونمط الكلام لاستخراج الكيانات المسماة بدقة أكثر دقة من مربعات الحوار المفتوحة في أنظمة الحوار المنطوقة. تظهر نتائجنا الاستفادة من سياق حوار النمذجة وأنماط الكلام في إعدادتين: إعداد قياسي مع قسم عشوائي من البيانات وأكثر واقعية من الإعداد ولكن أيضا أكثر صعوبة حيث تكون العديد من الكيانات المسماة التي تمت مواجهتها أثناء النشر غير مرئي أثناء التدريب.
يعد عدم وجود بيانات تدريبية المسمى للميزات الجديدة مشكلة شائعة في أنظمة الحوار في العالم الحقيقي المتغيرة بسرعة.كحل، نقترح نموذج توليد إعادة صياغة متعددة اللغات يمكن استخدامه لإنشاء كلمات جديدة للميزة المستهدفة واللغة المستهدفة.يمكن استخدام الكلام ال ذي تم إنشاؤه لزيادة بيانات التدريب الحالية لتحسين تصنيف نماذج وضع العلامات الفضائية.نحن نقيم جودة الكلام التي تم إنشاؤها باستخدام مقاييس التقييم الجوهرية وإجراء تجارب التقييم المصب مع اللغة الإنجليزية كلغة مصدر وتسع لغات مستهدفة مختلفة.تعرض طريقنا وعد عبر اللغات، حتى في إعداد طلقة صفرية حيث لا توجد بيانات بذرة متاحة.
عند بناء أنظمة الترجمة الآلات، يحتاج المرء في كثير من الأحيان إلى الاستفادة القصوى من مجموعات غير متجانسة من البيانات الموازية في التدريب، والتعامل مع المدخلات بقوة من المجالات غير المتوقعة في الاختبار.جذبت هذا السيناريو متعدد المجالات الكثير من العم ل الحديث الذي يقع تحت المظلة العامة لتعلم النقل.في هذه الدراسة، نشجع الترجمة متعددة المجالات، بهدف صياغة الدوافع لتطوير هذه الأنظمة والتوقعات المرتبطة فيما يتعلق بالأداء.تبين تجاربنا مع عينة كبيرة من أنظمة المجال متعددة أن معظم هذه التوقعات تلتقي بالكاد وتشير إلى أن هناك حاجة إلى مزيد من العمل لتحليل السلوك الحالي لأنظمة المجالات المتعددة وجعلها تمسك بوعودها بالكامل.
إن دمج مصادر المعرفة الخارجية بفعالية في المحادثات هي مشكلة طويلة الأمد في أبحاث الحوار مفتوح المجال. إن الأدبيات الموجودة على اختيار المعرفة المفتوحة للمجال محدود ويقتصر بعض الافتراضات الهشة على مصادر المعرفة لتبسيط المهمة الشاملة، مثل وجود عقوبة مع رفة واحدة ذات صلة لكل سياق. في هذا العمل، نقوم بتقييم حالة اختيار معرفة محادثة المحادثة مفتوحة للمجموعات، حيث تظهر المنهجيات الحالية المتعلقة بالبيانات والتقييم معيبة. ثم نحسنها من خلال اقتراح إطار جديد لجمع المعرفة ذات الصلة، وإنشاء مجموعة بيانات معدنية بناء على معالج كوربوس ويكيبيديا (WOW)، والتي نسميها نجاح باهر ++. WOW ++ المتوسطات 8 جمل المعرفة ذات الصلة لكل سياق حوار، واحتضان الغموض المتأصل من اختيار معرفة حوار المجال المفتوح. بعد ذلك، نقدر خوارزميات تصنيف المعرفة المختلفة على هذه البيانات المعززة مع كل من التقييم الجوهري وتدابير خارجية لجودة الاستجابة، والتي تبين أن Rerankers العصبية التي تستخدم WOW ++ يمكن أن تفوق المهاحين المدربين على مجموعات البيانات القياسية.
إن إزالة الكيانات المسماة (NED)، والتي تنطوي على رسم الخرائط النصية للكيانات الهيكلية، تحديا بشكل خاص في المجال الطبي بسبب وجود كيانات نادرة.تقتصر الأساليب الحالية بوجود الموارد الهيكلية الخشونة في قواعد المعرفة الطبية الحيوية وكذلك استخدام مجموعات ا لبيانات التدريبية التي توفر تغطية منخفضة على الموارد غير الشائعة.في هذا العمل، نتعلم هذه المشكلات من خلال اقتراح طريقة تكامل بيانات عبر المجال التي تنقل المعرفة الهيكلية من قاعدة معارف النص العامة إلى المجال الطبي.نحن نستخدم مخطط الاندماج لدينا لزيادة الموارد الهيكلية وتوليد مجموعة بيانات كبيرة بييوميديا للأحاد المحاكمة.يحقق نموذج عائليتنا مع المعرفة الهيكلية المحقونة أداء حديثة على مجموعة بيانات القياس الطبية القياسية: التوصيلات و BC5CDR.علاوة على ذلك، فإننا نحسن الغموض من كيانات نادرة تصل إلى 57 نقطة دقة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا