على الرغم من أنه تم اقتراح العديد من نماذج الترجمة الآلية التي أدركها العديد من المناظر في إدراج سياقات مشتركة بين العلويين في الترجمة، يمكن تدريب هذه النماذج فقط في المجالات التي توجد فيها مستندات متوازية ذات محاذاة أساسيا.لذلك نقدم طريقة بسيطة لأداء فك تشفير السياق مع أي نموذج ترجمة مسبقا مسبقا مسبقا مسبقا باستخدام نموذج لغة مستوى المستند.تم بناء وحدة فك ترميز Context-Aware الخاص بنا على البيانات الموازية على مستوى الجملة والبيانات غير المباشرة على مستوى المستند على مستوى المستند.من وجهة نظر نظرية، فإن مساهمتنا الأساسية هي التمثيل الجديد لمعلومات السياقية باستخدام المعلومات المتبادلة النقطة بين السياق والحكم الحالي.نوضح فعالية طريقنا على الترجمة الإنجليزية إلى الترجمة الروسية، من خلال تقييمها مع اختبارات بلو وتناقض الترجمة من السياق.
Although many end-to-end context-aware neural machine translation models have been proposed to incorporate inter-sentential contexts in translation, these models can be trained only in domains where parallel documents with sentential alignments exist. We therefore present a simple method to perform context-aware decoding with any pre-trained sentence-level translation model by using a document-level language model. Our context-aware decoder is built upon sentence-level parallel data and target-side document-level monolingual data. From a theoretical viewpoint, our core contribution is the novel representation of contextual information using point-wise mutual information between context and the current sentence. We demonstrate the effectiveness of our method on English to Russian translation, by evaluating with BLEU and contrastive tests for context-aware translation.
المراجع المستخدمة
https://aclanthology.org/
في وضع الترجمة في الوقت الحقيقي للترجمة في الوقت الفعلي، تبدأ نماذج الترجمة الآلية العصبية (NMT) بتوليد الرموز الرموز اللغوية المستهدفة من جمل لغة مصدر غير كاملة وجعلها أكثر صعوبة في ترجمة وجودة الترجمة السيئة. أظهرت الأبحاث السابقة أن NMT على مستوى
تتضمن ترجمة الآلات العصبية السياق (NMT) معلومات سياقية من النصوص المحيطة بها، والتي يمكن أن تحسن جودة الترجمة من الترجمة الآلية على مستوى المستند. ركز العديد من الأعمال الموجودة على NMT على دراية السياق على تطوير هياكل نموذجية جديدة لإدماج سياقات إضا
تصف هذه الورقة مشاركة الفريق Onenlp (LTRC، IIIT-Hyderabad) لمهمة WMT 2021، ترجمة لغوية مماثلة.لقد جربنا الترجمة الآلية العصبية القائمة على المحولات واستكشف استخدام تشابه لغة Tamil-Telugu وتيلجو التاميل.لقد أدمجنا استخدام تكوينات الكلمات الفرعية المخت
يستخدم تكيف المجال على نطاق واسع في التطبيقات العملية للترجمة الآلية العصبية، والتي تهدف إلى تحقيق أداء جيد على كل من المجال العام والبيانات داخل المجال. ومع ذلك، فإن الأساليب الحالية لتكييف المجال عادة ما تعاني من النسيان الكارثي، والاختلاف المجال ا
في الآونة الأخيرة، تم اقتراح عدد من الأساليب لتحسين أداء الترجمة للترجمة الآلية العصبية على مستوى المستند (NMT). ومع ذلك، فإن القليل من التركيز على موضوع تناسق الترجمة المعجمية. في هذه الورقة، نطبق ترجمة واحدة لكل خطاب "في NMT، وتهدف إلى تشجيع تناسق