ترغب بنشر مسار تعليمي؟ اضغط هنا

التعلم النقيض من أجل الترجمة الآلية المعالجة في السياق باستخدام معلومات Aquerence

Contrastive Learning for Context-aware Neural Machine Translation Using Coreference Information

326   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تتضمن ترجمة الآلات العصبية السياق (NMT) معلومات سياقية من النصوص المحيطة بها، والتي يمكن أن تحسن جودة الترجمة من الترجمة الآلية على مستوى المستند. ركز العديد من الأعمال الموجودة على NMT على دراية السياق على تطوير هياكل نموذجية جديدة لإدماج سياقات إضافية وأظهرت بعض النتائج الواعدة. ومع ذلك، فإن معظم الأعمال الموجودة تعتمد على فقدان الانتروبيا، مما يؤدي إلى استخدام محدود من المعلومات السياقية. في هذه الورقة، نقترح CoreFCL، وتعزيز البيانات الجديدة ومخطط التعلم المتعاقلي على أساس COMERALE بين المصدر والجمل السياقية. من خلال التفسير الذي تم اكتشافه تلقائيا يذكر السلامة في الجملة السياقية، يمكن corefcl تدريب النموذج على أن تكون حساسة لتناقض الأساسية. جربنا من طريقنا على نماذج NMT Common Commany-Aware NMT ومهام ترجمة على مستوى المستند. في التجارب، تحسنت طريقتنا باستمرار بلو من النماذج المقارنة على المهام الإنجليزية والألمانية والكورية. نظهر أيضا أن طريقتنا تعمل بشكل كبير على تحسين دقة Aquerence في جناح الاختبار الإنجليزي والألماني.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نصف نظام ملكة جمالنا الذي شارك في مهمة ترجمة WMT21 الأخبار. شاركنا بشكل رئيسي في تقييم اتجاهات الترجمة الثلاثة لمهام الترجمة الإنجليزية واليابانية والإنجليزية. في النظم المقدمة، تعتبر في المقام الأول شبكات أوسع، وشبكات أعمق، والترميز ا لموضعي النسبي، والشبكات التنافعية الديناميكية من حيث هيكل النماذج، في حين أننا من حيث التدريب، حققنا في تكييف المجال المعزز للتناقض في التعلم، والتدريب والإشراف على الذات، والتحسين طرق التدريب التبديل الموضوعية. وفقا لنتائج التقييم النهائي، يمكن لشبكة أعمق وأوسع وأقوى تحسين أداء الترجمة بشكل عام، ومع ذلك يمكن أن تحسن طريقة توطين نطاق البيانات لدينا الأداء أكثر. بالإضافة إلى ذلك، وجدنا أن التبديل إلى استخدام هدفنا المقترح خلال المرحلة الفائقة باستخدام البيانات الصغيرة المرتبطة بالنطاق نسبيا يمكن أن يحسن بشكل فعال من استقرار تقارب النموذج وتحقيق الأداء الأمثل بشكل أفضل.
على الرغم من أنه تم اقتراح العديد من نماذج الترجمة الآلية التي أدركها العديد من المناظر في إدراج سياقات مشتركة بين العلويين في الترجمة، يمكن تدريب هذه النماذج فقط في المجالات التي توجد فيها مستندات متوازية ذات محاذاة أساسيا.لذلك نقدم طريقة بسيطة لأدا ء فك تشفير السياق مع أي نموذج ترجمة مسبقا مسبقا مسبقا مسبقا باستخدام نموذج لغة مستوى المستند.تم بناء وحدة فك ترميز Context-Aware الخاص بنا على البيانات الموازية على مستوى الجملة والبيانات غير المباشرة على مستوى المستند على مستوى المستند.من وجهة نظر نظرية، فإن مساهمتنا الأساسية هي التمثيل الجديد لمعلومات السياقية باستخدام المعلومات المتبادلة النقطة بين السياق والحكم الحالي.نوضح فعالية طريقنا على الترجمة الإنجليزية إلى الترجمة الروسية، من خلال تقييمها مع اختبارات بلو وتناقض الترجمة من السياق.
تتطلب أساليب التعلم المنهج الحالية للترجمة الآلية العصبية (NMT) أخذ العينات مبالغ كافية من العينات "من بيانات التدريب في مرحلة التدريب المبكر. هذا غير قابل للتحقيق دائما لغات الموارد المنخفضة حيث تكون كمية البيانات التدريبية محدودة. لمعالجة مثل هذا ا لقيد، نقترح نقه نهج تعليمي مناهج رواية حكيمة ينشئ كميات كافية من العينات السهلة. على وجه التحديد، يتعلم النموذج التنبؤ بتسلسل فرعي قصير من الجزء التالي من كل جملة مستهدفة في المرحلة المبكرة للتدريب. ثم يتم توسيع التسلسل الفرعي تدريجيا مع تقدم التدريب. مثل هذا التصميم المناهج الدراسي الجديد مستوحى من التأثير التراكمي لأخطاء الترجمة، مما يجعل الرموز الأخيرة أكثر تحديا للتنبؤ أكثر من البداية. تبين تجارب واسعة أن نهجنا يمكن أن تتفوق باستمرار على الأساس على خمسة أزواج لغات، خاصة لغات الموارد المنخفضة. يجمع بين نهجنا مع طرق مستوى الجملة يحسن أداء لغات الموارد العالية.
عادة ما يتم تكليف الترجمة الآلية العصبية متعددة الموارد (MNMT) بتحسين أداء الترجمة على أزواج لغة واحدة أو أكثر بمساعدة أزواج لغة الموارد عالية الموارد.في هذه الورقة، نقترح اثنين من المناهج البحث البسيطة القائمة على البحث - طلب بيانات التدريب المتعدد اللغات - والتي تساعد على تحسين أداء الترجمة بالاقتران مع التقنيات الحالية مثل الضبط الدقيق.بالإضافة إلى ذلك، نحاول تعلم منهجا من المناهج الدراسية من MNMT من الصفر بالاشتراك مع تدريب نظام الترجمة باستخدام قطاع الطرق متعددة الذراع السياقية.نعرض على مجموعة بيانات الترجمة المنخفضة من Flores التي يمكن أن توفر هذه المناهج المستفادة نقاطا أفضل للضبط وتحسين الأداء العام لنظام الترجمة.
تهدف توليد الصياغة الموجهة إلى Exemplar (EGPG) إلى توليد جملة مستهدفة تتوافق مع أسلوب Exemplar المحدد أثناء توسيع نطاق معلومات المحتوى من الجملة المصدر. في هذه الورقة، نقترح طريقة جديدة بهدف تعلم تمثيل أفضل للنمط والمحتوى. تحفز هذه الطريقة بشكل أساسي النجاح الأخير للتعلم المقاوم للتناقض التي أثبتت قوتها في مهام استخراج ميزة غير مدفوعة. تتمثل الفكرة في تصميم خسائرتين متباينتين فيما يتعلق بالمحتوى والأسلوب من خلال النظر في خصائص المشكلة أثناء التدريب. إحدى الممتلكات هي أن الجملة المستهدفة تشترك في نفس المحتوى مع جملة المصدر، والخصائص الثانية هي أن الجملة المستهدفة تشارك نفس النمط مع Exemplar. يتم دمج هذين الخسائرتين للتناقض في نموذج فك التشفير العام. تثبت التجارب على مجموعة بيانات اثنين، وهي QQP-Pos و Paranmt، فعالية خسائرنا القاطعة المقترحة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا