ترغب بنشر مسار تعليمي؟ اضغط هنا

تجانس وتقليص مساحة البحث SEQ2SEQ Sparse

Smoothing and Shrinking the Sparse Seq2Seq Search Space

391   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يتم تدريب نماذج التسلسل الحالية للتسلسل لتقليل الانتروبي عبر الانتروبيا واستخدام SoftMax لحساب الاحتمالات العادية محليا على تسلسلات الهدف. على الرغم من أن هذا الإعداد قد أدى إلى نتائج قوية في مجموعة متنوعة من المهام، فإن إحدى الجوانب غير المرضية هي التحيز الطول: تمنح النماذج درجات عالية لفرضيات قصيرة وعدم كفاية وغالبا ما تجعل السلسلة الفارغة The Argmax --- ما يسمى القط حصلت على لسانك مشكلة. تقدم نماذج تسلسل متناشرة مقرها ENTMAX مؤخرا حلا محتملا، نظرا لأنهم يستطيعون تقليص مساحة البحث عن طريق تعيين احتمال صفر لفرضيات سيئة، ولكن قدرتهم على التعامل مع المهام على مستوى الكلمات مع المحولات قد تم اختبارها قط. في هذا العمل، نظهر أن النماذج المستندة إلى Entmax تحل فعليا القط حصلت على مشكلة لسانك، وإزالة مصدر رئيسي لخطأ نموذج الترجمة الآلية العصبية. بالإضافة إلى ذلك، نعيد بتعميم تجانس الملصقات، وهي تقنية تنظيمية حاسمة، إلى عائلة أوسع من الخسائر الشابة الشابة، والتي تشمل كل من انتروبيا وخسائر Entmax. وضعت نماذج خسارة Entmax الناتجة عن الملصقات الناتجة حالة جديدة من الفن على تحويل Grapheme-Vooneme في Grapheme وتقديم التحسينات وخصائص معايرة أفضل على الانعطاف المورفولوجي عبر اللغات والترجمة الآلية لمدة 7 أزواج لغة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يهدف الترشيد الانتقائي إلى إنتاج قرارات جنبا إلى جنب مع المناولة (على سبيل المثال، النصوص النصية أو محاذاة الكلمات بين جملتين). عادة ما يتم تصميم المنظمات على غرار أقنعة ثنائية عشوائية، تتطلب من أدراج التدرج المستندة إلى أخذ العينات، والتي تعقد التدر يب ويتطلب ضبط فرط الحرارة الدقيق. آليات الاهتمام المتنقل هي بديل محدد، لكنها تفتقر إلى طريقة لتنظيم استخراج الأساس المنطقي (على سبيل المثال، للسيطرة على Sparsity من تسليط الضوء على نص أو عدد المحاذاة). في هذه الورقة، نقدم إطارا موحدا لاستخراج التفسيرات المحددة من خلال الاستدلال المحدود على رسم بياني عامل، مما يشكل طبقة مختلفة. نهجنا تخفف إلى حد كبير التدريب والأساس المنطقي، مما يتفوق بشكل عام على العمل السابق بشأن ما يأتي إلى الأداء والمعقولية للمناولة المستخرجة. نحن نقدم كذلك دراسة مقارنة للأساليب الاستوكاستيكية والحتمية لاستخراج الأساس المنطقي لتصنيف مهام الاستدلال واللغة الطبيعية، وتقييم قوة التنبؤية بشكل مشترك، ونوعية التفسيرات، والتقلبات النموذجية.
في حين أن التعرف التلقائي على الكلام قد أظهر عرضة لهجمات الخصومة، فإن الدفاعات ضد هذه الهجمات لا تزال متأخرة.يمكن كسر الدفاعات الحالية والساذجة جزئيا مع هجوم على التكيف.في مهام التصنيف، تبين أن نموذج التجانس العشوائي فعال في النماذج الدفاعية.ومع ذلك، من الصعب تطبيق هذه النموذج لمهام ASR، بسبب تعقيدها والطبيعة المتسلسلة لمخرجاتها.تتغلب الورق لدينا على بعض هذه التحديات من خلال الاستفادة من الأدوات الخاصة بالكلام مثل التحسين والتصويت Rover لتصميم نموذج ASR قوي للقلق.نحن نطبق الإصدارات التكيفية من الهجمات الحديثة، مثل هجوم ASR غير المحدد، ونموذجنا، وإظهار أن أقوى دفاعنا هو قوي لجميع الهجمات التي تستخدم الضوضاء غير المسموعة، ولا يمكن كسرها إلا مع تشويه كبير للغايةوبعد
تحصل آليات النسخ بشكل صريح على الرموز دون تغيير من تسلسل المصدر (الإدخال) لإنشاء تسلسل الهدف (الإخراج) ضمن إطار SEQ2SEQ العصبي.ومع ذلك، فإن معظم آليات النسخ الحالية تفكر فقط في نسخ كلمة واحدة من الجمل المصدر، مما يؤدي إلى فقدان الرموز الأساسية أثناء نسخ يمتد لفترة طويلة.في هذا العمل، نقترح هندسة التوصيل والتشغيل، وهي Biocopy، لتخفيف المشكلة المذكورة أعلاه.على وجه التحديد، في مرحلة التدريب، نقوم ببناء علامة حيوية لكل رمزية وتدريب النموذج الأصلي مع علامات الحيوية بشكل مشترك.في مرحلة الاستدلال، سيتوقع النموذج أولا العلامة الحيوية في كل خطوة زمنية، ثم إجراء استراتيجيات قناع مختلفة استنادا إلى الملصق الحيوي المتوقع لتقليل نطاق توزيعات الاحتمالات على قائمة المفردات.النتائج التجريبية على اثنين من المهام الإدارية المنفصلة تظهر أنهم يتفوقون جميعا على النماذج الأساسية عن طريق إضافة البوغايت لدينا إلى هيكل النموذج الأصلي.
أظهرت نماذج SEQ2SEQ فعالية لا تصدق في مجموعة كبيرة ومتنوعة من التطبيقات. ومع ذلك، أظهرت الأبحاث الحديثة أن اللغة غير اللائقة في عينات التدريب وحالات الاختبار المصممة مصممة يمكن أن تحفز نماذج SEQ2SeQ لإخراج الألفاظ النابية. قد تؤذي هذه المخرجات قابلية استخدام نماذج SEQ2SEQ وجعل المستخدمين النهائيين يشعرون بالإهانة. لمعالجة هذه المشكلة، نقترح إطار تدريبي مع متانة معتمدة للقضاء على الأسباب التي تؤدي إلى توليد الألفاظ النابية. يعزز إطار التدريب المقترح فقط قائمة قصيرة من أمثلة الألفاظ النابية لمنع نماذج SEQ2SEQ من توليد طيف أوسع من الألفاظ النابية. يتكون الإطار من مكون تدريبي للقضاء على النمط لقمع تأثير أنماط اللغة ذات الألفاظ النابية في مجموعة التدريب، وعنصر تدريب مقاوم للمثريحة لتوفير متانة معتمدة لنماذج SEQ2SEQ من تعبيرات النبأ المستقل عن عمد في عينات الاختبار. في التجارب، نفكر في مهام اثنين من الممثلين للتنصيب أن SEQ2SEQ يمكن تطبيقها على ذلك، أي نقل النمط وتوليد الحوار. تظهر النتائج التجريبية الواسعة أن إطار التدريب المقترح يمكن أن يمنع النماذج NLP بنجاح من توليد الألفاظ النابية.
ندرس في هذا البحث إمكانية المساهمة في حل مسألة توجيه المركبة مع نوافذ زمنية Vehicle Routing Problem with Time Windows (VRPTW) التي هي واحدة من مشاكل الأمثلية من النوع NP-Hard. نقدم خوارزمية هجينة تعتمد على مبدأ التكامل بين خوارزمية البحث المحلي الم وجه و خوارزمية البحث المحظور و وجود البحث المحلي 2- Opt ، و المستند على خوارزمية التوفير المرتبطة بتابع هدف معين لتوفير الكثير من المدخرات ، و كما سنقارن الحل الناتج عن هذا النهج الهجين و المطور مع نتائج تجارب قياسية لخوارزميات هجينة لاختبار فعالية هذه الخوارزمية المقدمة و تأثيرها على نوعية الحل من حيث سرعة التقارب و القدرة على إيجاد حلول أفضل .

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا