تحصل آليات النسخ بشكل صريح على الرموز دون تغيير من تسلسل المصدر (الإدخال) لإنشاء تسلسل الهدف (الإخراج) ضمن إطار SEQ2SEQ العصبي.ومع ذلك، فإن معظم آليات النسخ الحالية تفكر فقط في نسخ كلمة واحدة من الجمل المصدر، مما يؤدي إلى فقدان الرموز الأساسية أثناء نسخ يمتد لفترة طويلة.في هذا العمل، نقترح هندسة التوصيل والتشغيل، وهي Biocopy، لتخفيف المشكلة المذكورة أعلاه.على وجه التحديد، في مرحلة التدريب، نقوم ببناء علامة حيوية لكل رمزية وتدريب النموذج الأصلي مع علامات الحيوية بشكل مشترك.في مرحلة الاستدلال، سيتوقع النموذج أولا العلامة الحيوية في كل خطوة زمنية، ثم إجراء استراتيجيات قناع مختلفة استنادا إلى الملصق الحيوي المتوقع لتقليل نطاق توزيعات الاحتمالات على قائمة المفردات.النتائج التجريبية على اثنين من المهام الإدارية المنفصلة تظهر أنهم يتفوقون جميعا على النماذج الأساسية عن طريق إضافة البوغايت لدينا إلى هيكل النموذج الأصلي.
Copy mechanisms explicitly obtain unchanged tokens from the source (input) sequence to generate the target (output) sequence under the neural seq2seq framework. However, most of the existing copy mechanisms only consider single word copying from the source sentences, which results in losing essential tokens while copying long spans. In this work, we propose a plug-and-play architecture, namely BioCopy, to alleviate the problem aforementioned. Specifically, in the training stage, we construct a BIO tag for each token and train the original model with BIO tags jointly. In the inference stage, the model will firstly predict the BIO tag at each time step, then conduct different mask strategies based on the predicted BIO label to diminish the scope of the probability distributions over the vocabulary list. Experimental results on two separate generative tasks show that they all outperform the baseline models by adding our BioCopy to the original model structure.
المراجع المستخدمة
https://aclanthology.org/
أظهرت نماذج لغة كبيرة مدربة مسبقا قدرةها مرارا وتكرارا على إنتاج نص يجيد. ومع ذلك حتى عند البدء من موجه، يمكن أن يستمر الجيل في العديد من الاتجاهات المعقولة. طرق فك التشفير الحالية بهدف التحكم في الجيل، على سبيل المثال، لضمان إدراج كلمات محددة، إما أ
تم استخدام نماذج ترميز فك التشفير بشكل شائع للعديد من المهام مثل الترجمة الآلية وتوليد الاستجابة.كما ذكرت البحث السابق، تعاني هذه النماذج من توليد التكرار الزائد.في هذا البحث، نقترح آلية جديدة لنماذج تشفير التشفير التي تقدر الاختلاف الدلالي في جملة م
أظهرت نماذج SEQ2SEQ فعالية لا تصدق في مجموعة كبيرة ومتنوعة من التطبيقات. ومع ذلك، أظهرت الأبحاث الحديثة أن اللغة غير اللائقة في عينات التدريب وحالات الاختبار المصممة مصممة يمكن أن تحفز نماذج SEQ2SeQ لإخراج الألفاظ النابية. قد تؤذي هذه المخرجات قابلية
السمية منتشرة في وسائل التواصل الاجتماعي وتشكل تهديدا كبيرا لصحة المجتمعات عبر الإنترنت.أدت مقدمة أحدث نماذج اللغة المدربة مسبقا، والتي حققت نتائج أحدث من المهام في العديد من المهام NLP، الطريقة التي نقترب بها معالجة اللغة الطبيعية.ومع ذلك، فإن الطبي
يتم تدريب نماذج التسلسل الحالية للتسلسل لتقليل الانتروبي عبر الانتروبيا واستخدام SoftMax لحساب الاحتمالات العادية محليا على تسلسلات الهدف. على الرغم من أن هذا الإعداد قد أدى إلى نتائج قوية في مجموعة متنوعة من المهام، فإن إحدى الجوانب غير المرضية هي ا