تقدم التطورات الحديثة في QA في الهواء الطلق إلى نماذج قوية تعتمد على استرجاع كثيف، ولكن ركزت فقط على استرداد المقاطع النصية.في هذا العمل، نتعامل مع QA المجال المفتوح على الجداول لأول مرة، وإظهار أنه يمكن تحسين الاسترجاع من خلال المسترد المصمم للتعامل مع سياق الجدول.نقدم إجراءات فعالة مسبقة التدريب لاستردادنا وتحسين جودة الاسترجاع مع السلبيات الصلبة الملغومة.نظرا لأن مجموعات البيانات ذات الصلة مفقودة، فإننا نستخلص مجموعة فرعية من الأسئلة الطبيعية (Kwiatkowski et al.، 2019) في مجموعة بيانات QA.نجد أن المسترد الخاص بنا يحسن نتائج الاسترجاع من 72.0 إلى 81.1 استدعاء @ 10 وتنفذ QA نهاية إلى نهاية من 33.8 إلى 37.7 مباراة دقيقة، عبر المسترد القائم على بيرت.
Recent advances in open-domain QA have led to strong models based on dense retrieval, but only focused on retrieving textual passages. In this work, we tackle open-domain QA over tables for the first time, and show that retrieval can be improved by a retriever designed to handle tabular context. We present an effective pre-training procedure for our retriever and improve retrieval quality with mined hard negatives. As relevant datasets are missing, we extract a subset of Natural Questions (Kwiatkowski et al., 2019) into a Table QA dataset. We find that our retriever improves retrieval results from 72.0 to 81.1 recall@10 and end-to-end QA results from 33.8 to 37.7 exact match, over a BERT based retriever.
المراجع المستخدمة
https://aclanthology.org/
حققت استرجاع النص العصبي الكثيف نتائج واعدة حول السؤال المفتوح للنطاق الرد (QA)، حيث يتم استغلال تمثيلات كامنة للأسئلة والمراجيات للحصول على أقصى قدر من البحث الداخلي في عملية الاسترجاع. ومع ذلك، فإن المستردات الكثيفة الحالية تتطلب تقسيم المستندات إل
نقدم سبارتا، وهي طريقة استرجاع عصبي رواية تعرض وعد كبير في الأداء والتعميم والتفسيرية للحصول على سؤال السؤال المفتوح. على عكس العديد من أساليب التصنيف العصبي التي تستخدم ناقلات كثيفة أقرب بحث جار، يتعلم سبارتا تمثيل متقطع يمكن تنفيذها بكفاءة كمؤشر مق
نقدم مجموعة بيانات جديدة لإعادة كتابة الأسئلة في سياق المحادثة (QRECC)، والتي تحتوي على محادثات 14 ألف مع أزواج من الإجابات السؤال 80k.تتمثل المهمة في QRECC في العثور على إجابات على أسئلة المحادثة داخل مجموعة من صفحات الويب 10 أمتار (تقسيم إلى 54 متر
تفترض السؤال المتعدد اللغات الرد على المهام عادة أن الإجابات موجودة بنفس اللغة مثل السؤال. ومع ذلك، في الممارسة العملية، تواجه العديد من اللغات كل من ندرة المعلومات --- حيث تحتوي اللغات على عدد قليل من المقالات المرجعية --- واستاجةم المعلومات --- أين
يسأل الأسئلة المفتوحة الإجابة على تحديد إجابات الأسئلة التي أنشأتها المستخدم في مجموعات ضخمة من المستندات. أساليب Readriever-Reverse Graph النهج هي أسران كبيرتان من الحلول لهذه المهمة. يطبق قارئ المسترد أولا تقنيات استرجاع المعلومات للحصول على تحديد