ترغب بنشر مسار تعليمي؟ اضغط هنا

هي بارت: ملخص الوثيقة مع بارت هرمي

Hie-BART: Document Summarization with Hierarchical BART

279   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقترح هذه الورقة نموذجا جديدا لتلخيص وثائق الجماعي، بارت هرمي (HIE-BART)، والذي يلتقط الهياكل الهرمية للمستند (I.E.، هياكل الجملة) في نموذج بارت.على الرغم من أن نموذج بارت الحالي قد حقق أداء أحدث في مهام تلخيص المستندات، إلا أن النموذج ليس لديه التفاعلات بين المعلومات على مستوى الجملة ومعلومات على مستوى الكلمات.في مهام الترجمة الآلية، تم تحسين أداء نماذج الترجمة الآلية العصبية من خلال دمج اهتمام الذات المتعدد الحبيبية (MG-SA)، والذي يلتقط العلاقات بين الكلمات والعبارات.مستوحاة من العمل السابق، يشتمل نموذج HIE-BART المقترح على MG-SA في تشفير نموذج BART لالتقاط هياكل الجملة.تظهر التقييمات المتعلقة بطبقة بيانات CNN / Daily Mail أن نموذج HIE-BARD المقترح يفوق بعض خطوط الأساس القوية وتحسين أداء نموذج بارت غير هرمي (+0.23 Rouge-L).



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تفتقر الأبحاث الحديثة باستخدام نماذج اللغة المدربة مسبقا لمهمة تلخيص المستندات متعددة الوثائق إلى تحقيق عميق في الحالات الخاطئة المحتملة وتطبيقها المحتمل على اللغات الأخرى.في هذا العمل، نطبق نموذج لغة مدرب مسبقا (BART) لمهمة تلخيص متعدد الوثائق (MDS) باستخدام كل من الضبط الدقيق ودون ضبط جيد.نحن نستخدم مجموعات بيانات اللغة الإنجليزية ومجموعة بيانات ألمانية واحدة لهذه الدراسة.أولا، نقوم بإعادة إنتاج ملخصات متعددة الوثائق باللغة الإنجليزية باتباع إحدى الدراسات الحديثة.بعد ذلك، نعرض لقابلية تطبيق النموذج إلى اللغة الألمانية من خلال تحقيق أداء حديثة على MDS الألمانية.نقوم بإجراء تحليل خطأ متعمق للنهج التالي لكلتا اللغتين، مما يؤدي إلى تحديد معظم الأخطاء البارزة، من الحقائق الصادقة وتعليم الموضوع، وقياس مقدار الاستقصاء.
في هذه الورقة، نقدم نظام TMU العصبي الخاص بنا (NMT) مقدم له مهمة براءات الاختراع (اليابانية والإنجليزية الكورية اليابانية) من ورشة العمل الثامنة حول الترجمة الآسيوية (Nakazawa et al.، 2021).في الآونة الأخيرة، اقترحت عدة دراسات طرز فك التشفير المدربة مسبقا باستخدام بيانات أحادية الأونلينغ.تم عرض واحدة من النماذج المدربة مسبقا، بارت (لويس وآخرون، 2020)، لتحسين دقة الترجمة عن طريق ضبط الدقيقة مع بيانات ثنائية اللغة.ومع ذلك، قاموا بتجريد الترجمة الإنجليزية الرومانية فقط باستخدام اللغة الإنجليزية بارت.في هذه الورقة، ندرس فعالية بارت اليابانية باستخدام مكتب براءات الاختراع الياباني Corpus 2.0.تشير تجاربنا إلى أن البارت الياباني يمكنه أيضا تحسين دقة الترجمة في كل من الترجمات اليابانية اليابانية والإنجليزية الكورية.
الكشف والتصنيف في وقت واحد هو مهمة غير موجهة حاليا في أطر NLP القياسية.تصف هذه الورقة السبب وكيف تم استخدام نموذج الترفيح في الجمع بين الكشف عن الفحص والتصنيف لمعالجة SubTask 2 من مهمة Semeval-2021 6.
مع الوفاء المتزايد من نصوص الاجتماعات، اجتذبت ملخص الاجتماع المزيد والمزيد من الاهتمام من الباحثين. حققت طريقة التدريب المسبق غير المعروضة على أساس هيكل المحولات المبلغة مع ضبط المهام المصب الناجمة نجاحا كبيرا في مجال تلخيص النص. ومع ذلك، فإن الهيكل الدلالي وأسلوب حقول الاجتماع يختلف تماما عن مقالات. في هذا العمل، نقترح شبكة فك ترميز ترميز ترميز هيرسلجية ذات مهام مسبقة مهام متعددة. على وجه التحديد، نحن نخفي الجمل الرئيسية في تشفير مستوى الكلمات وتوليدها في وحدة فك الترميز. علاوة على ذلك، نقع بشكل عشوائي بعض محاذاة الدور في نص الإدخال وإجبار النموذج على استعادة علامات الدور الأصلية لإكمال المحاذاة. بالإضافة إلى ذلك، نقدم آلية تجزئة موضوعا لمواصلة تحسين جودة الملخصات التي تم إنشاؤها. تظهر النتائج التجريبية أن طرازنا متفوق على الأساليب السابقة في مجموعات بيانات ملخص الاجتماع AMI و ICSI.
تقدم هذه الورقة نهجا استخراج غير مخطئ لتلخيص المستندات الطويلة العلمية بناء على مبدأ اختناق المعلومات.مستوحاة من العمل السابق الذي يستخدم مبدأ اختناق المعلومات لضغط الجملة، فإننا نقدمها لتلخيص مستوى الوثيقة مع خطوتين منفصلين.في الخطوة الأولى، نستخدم إشارة (إشارات) كاستعلامات لاسترداد المحتوى الرئيسي من المستند المصدر.بعد ذلك، يقوم نموذج لغة مدرب مسبقا بإجراء المزيد من الجملة والتحرير لإرجاع الملخصات المستخرجة النهائية.الأهم من ذلك، يمكن امتدت عملنا بمرونة إلى إطار متعدد المشاهدات من قبل إشارات مختلفة.التقييم التلقائي على ثلاث مجموعات بيانات وثيقة علمية تتحقق من فعالية الإطار المقترح.يشير التقييم البشري الإضافي إلى أن الملخصات المستخرجة تغطي المزيد من جوانب المحتوى أكثر من النظم السابقة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا