الكشف والتصنيف في وقت واحد هو مهمة غير موجهة حاليا في أطر NLP القياسية.تصف هذه الورقة السبب وكيف تم استخدام نموذج الترفيح في الجمع بين الكشف عن الفحص والتصنيف لمعالجة SubTask 2 من مهمة Semeval-2021 6.
Simultaneous span detection and classification is a task not currently addressed in standard NLP frameworks. The present paper describes why and how an EncoderDecoder model was used to combine span detection and classification to address subtask 2 of SemEval-2021 Task 6.
المراجع المستخدمة
https://aclanthology.org/
الهدف من SEMEVAL-2021 المهمة 6 هو تحديد التقنيات المستخدمة مع فترة (ق) من النص المشمول من كل تقنية.تصف هذه الورقة النظام والنموذج الذي طورنا لهذه المهمة.نقترح أولا نظام خط أنابيب لتحديد المواقف، ثم صنف هذه التقنية في تسلسل الإدخال.لكنه يعاني بشدة من
تصف هذه الورقة نظامنا المشارك في المهمة 6 من Semeval-2021: تركز المهمة على تصنيف تقنية الدعاية متعددة الوسائط وتهدف إلى تصنيف الصورة والنص في 22 فئة. في هذه الورقة، نقترح استخدام الهندسة المعمارية القائمة على المحولات لفوسات القرائن من كل من الصورة و
من بين المهام التي تحفزها انتشار المعلومات الخاطئة، فإن اكتشاف الدعاية تحديا بشكل خاص بسبب عجز التعليقات التوضيحية الدقيقة الدقيقة اللازمة لتدريب نماذج التعلم الآلي.هنا نظهر كيف يمكن الاستفادة من البيانات من المهام الأخرى ذات الصلة، بما في ذلك تقييم
تصف هذه الورقة النظام المستخدم من قبل فريق Aimh للتعامل مع المهمة السامية 6. نقترح نهج يعتمد على بنية بناء على نموذج المحول لمعالجة المحتوى متعدد الوسائط (النص والصور) في الميمات.بنية لدينا، تسمى DVTT (محول نصي مرئي مزدوج)، تقترب من المهام الفرعية 1
توضح هذه الورقة وتبحث في أنظمة مختلفة لمعالجة المهمة 6 من Semeval-2021: اكتشاف تقنيات الإقناع في النصوص والصور، والتعقب الفرعي 1. تهدف المهمة إلى بناء نموذج لتحديد التقنيات الطبية والنفسية (مثل التبسيط المفاجئ، الاسم-Cling، تشويه) في المحتوى النصي من