تكسب المكالمات هي من بين الموارد المهمة للمستثمرين والمحللين لتحديث أهداف الأسعار الخاصة بهم. الشركات عادة ما تنشر النصوص المقابلة قريبا بعد أحداث الأرباح. ومع ذلك، فإن النصوص الخام هي في كثير من الأحيان طويلة جدا وتفوت الهيكل المتماسك. لتعزيز الوضوح، يكتب المحللون تقارير منظما جيدا لبعض أحداث استدعاء الأرباح الهامة من خلال تحليلها، تتطلب الوقت والجهد. في هذه الورقة، نقترح تاتسوم (نموذج الاهتمام بإنفاذ القالب للتلخيص)، ونهج تلخيص عصبي معمم لتوليد التقرير المنظم، وتقييم أدائه في مجال مكالمات الأرباح. نحن نبني كوربا كبيرا مع الآلاف من النصوص والتقارير باستخدام أحداث الأرباح التاريخية. نقوم أولا بتوليد مجموعة مرشحة من التقارير من Corpus كقوالب ناعمة محتملة لا تفرض قواعد فعلية على الإخراج. بعد ذلك، نوظف نموذج تشفير مع فقدان الهامش المرتبة لتحديد مجموعة المرشح وحدد أفضل قالب الجودة. أخيرا، يتم استخدام النص والقالب الناعم المحدد كإدخال في إطار SEQ2SEQ لتوليد التقرير. النتائج التجريبية على مجموعة بيانات المكالمات الأرباح تظهر أن نموذجنا يتفوق بشكل كبير على النماذج الحديثة من حيث المعلومات والهيكل.
Earning calls are among important resources for investors and analysts for updating their price targets. Firms usually publish corresponding transcripts soon after earnings events. However, raw transcripts are often too long and miss the coherent structure. To enhance the clarity, analysts write well-structured reports for some important earnings call events by analyzing them, requiring time and effort. In this paper, we propose TATSum (Template-Aware aTtention model for Summarization), a generalized neural summarization approach for structured report generation, and evaluate its performance in the earnings call domain. We build a large corpus with thousands of transcripts and reports using historical earnings events. We first generate a candidate set of reports from the corpus as potential soft templates which do not impose actual rules on the output. Then, we employ an encoder model with margin-ranking loss to rank the candidate set and select the best quality template. Finally, the transcript and the selected soft template are used as input in a seq2seq framework for report generation. Empirical results on the earnings call dataset show that our model significantly outperforms state-of-the-art models in terms of informativeness and structure.
المراجع المستخدمة
https://aclanthology.org/
نماذج الموضوعات العصبية (NTMS) تطبيق الشبكات العصبية العميقة إلى نمذجة الموضوعات. على الرغم من نجاحها، تجاهل NTMS عموما جائبا مهمين: (1) فقط يتم استخدام معلومات عدد الكلمات على مستوى المستند للتدريب، في حين يتم تجاهل المزيد من المعلومات ذات المستوى ا
يعد الانتباه عبر الانتباه عنصرا هاما للترجمة الآلية العصبية (NMT)، والتي تتحقق دائما عن طريق انتباه DOT-Product في الأساليب السابقة.ومع ذلك، فإن اهتمام DOT-Product يعتبر فقط الارتباط بين الكلمات بين الكلمات، مما أدى إلى تشتت عند التعامل مع جمل طويلة
نظرا لتطوير تكنولوجيا الكمبيوتر الحديثة والزيادة في عدد مستخدمي الوسائط عبر الإنترنت، يمكننا رؤية جميع أنواع المشاركات والتعليقات في كل مكان على الإنترنت.الكلام الأمل لا يمكن أن تلهم فقط المبدعين ولكن أيضا جعل المشاهدين الآخرين ممتعة.من الضروري أن يك
في هذه الورقة، نقترح نموذجا مقرا له عناية سياقية مع تدريبات دقيقة على مرحلتين باستخدام روبرتا.أولا، نقوم بإجراء النغمة الجميلة في المرحلة الأولى على Corpus مع روبرتا، بحيث يمكن للنموذج أن يتعلم بعض المعرفة المسبقة المجال.ثم نحصل على التضمين السياقي ب
باللغة العربية، يتم استخدام علامات التشكيل لتحديد المعاني وكذلك النطق.ومع ذلك، غالبا ما يتم حذف الدروع من النصوص المكتوبة، مما يزيد من عدد المعاني والنطوقتين المحتملة.هذا يؤدي إلى نص غامض ويجعل العملية الحسابية على النص غير المسموح به أكثر صعوبة.في ه