يعد الانتباه عبر الانتباه عنصرا هاما للترجمة الآلية العصبية (NMT)، والتي تتحقق دائما عن طريق انتباه DOT-Product في الأساليب السابقة.ومع ذلك، فإن اهتمام DOT-Product يعتبر فقط الارتباط بين الكلمات بين الكلمات، مما أدى إلى تشتت عند التعامل مع جمل طويلة وإهمال العلاقات المجاورة للمصدر.مستوحاة من اللغويات، فإن القضايا المذكورة أعلاه ناجمة عن تجاهل نوع من الاهتمام، الذي يطلق عليه الانتباه المركزي، الذي يركز على عدة كلمات مركزية ثم ينتشر حولها.في هذا العمل، نطبق نموذج خليط غاوسي (GMM) لنموذج الاهتمام المركزي بالاهتمام الشامل.تبين التجارب والتحليلات التي أجريناها على ثلاث مجموعات من مجموعات البيانات أن الطريقة المقترحة تتفوق على خط الأساس ولديها تحسن كبير في جودة المحاذاة ودقة N-Gram والترجمة الحكم الطويلة.
Cross-attention is an important component of neural machine translation (NMT), which is always realized by dot-product attention in previous methods. However, dot-product attention only considers the pair-wise correlation between words, resulting in dispersion when dealing with long sentences and neglect of source neighboring relationships. Inspired by linguistics, the above issues are caused by ignoring a type of cross-attention, called concentrated attention, which focuses on several central words and then spreads around them. In this work, we apply Gaussian Mixture Model (GMM) to model the concentrated attention in cross-attention. Experiments and analyses we conducted on three datasets show that the proposed method outperforms the baseline and has significant improvement on alignment quality, N-gram accuracy, and long sentence translation.
المراجع المستخدمة
https://aclanthology.org/
أسئلة البحث الحديثة أهمية الاهتمام الذاتي لمنتج المنتج في نماذج المحولات ويظهر أن معظم رؤساء الاهتمام تعلم أنماطا موضعية بسيطة. في هذه الورقة، ندفع أبعد من ذلك في خط البحث هذا واقتراح آلية بديلة جديدة عن النفس: الاهتمام المتكرر (ران). تتعلم RAN بشكل
نقدم طريقة بسيطة لتوسيع المحولات إلى الأشجار من جانب المصدر.نحن نحدد عددا من الأقنعة التي تحد من اهتمام الذات بناء على العلاقات بين العقد الشجرة، ونحن نسمح لكل انتباه في أن يتعلم أي قناع أو أقنعة لاستخدامها.عند الترجمة من الإنجليزية إلى العديد من لغا
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت
نقترح طريقة تكبير البيانات للترجمة الآلية العصبية.إنه يعمل عن طريق تفسير نماذج اللغة ومحاذاة الجمل الفعلية سببا.على وجه التحديد، فإنه يخلق كورس ترجمة موازية مزعجة عن طريق توليد عبارات محاذاة مضادة للمحاطة (المسار).نحن نولد هذه من خلال أخذ عينات من عب