ترغب بنشر مسار تعليمي؟ اضغط هنا

النمذجة التركيز اعتراض الاهتمام للترجمة الآلية العصبية مع نموذج خليط غاوسي

Modeling Concentrated Cross-Attention for Neural Machine Translation with Gaussian Mixture Model

333   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يعد الانتباه عبر الانتباه عنصرا هاما للترجمة الآلية العصبية (NMT)، والتي تتحقق دائما عن طريق انتباه DOT-Product في الأساليب السابقة.ومع ذلك، فإن اهتمام DOT-Product يعتبر فقط الارتباط بين الكلمات بين الكلمات، مما أدى إلى تشتت عند التعامل مع جمل طويلة وإهمال العلاقات المجاورة للمصدر.مستوحاة من اللغويات، فإن القضايا المذكورة أعلاه ناجمة عن تجاهل نوع من الاهتمام، الذي يطلق عليه الانتباه المركزي، الذي يركز على عدة كلمات مركزية ثم ينتشر حولها.في هذا العمل، نطبق نموذج خليط غاوسي (GMM) لنموذج الاهتمام المركزي بالاهتمام الشامل.تبين التجارب والتحليلات التي أجريناها على ثلاث مجموعات من مجموعات البيانات أن الطريقة المقترحة تتفوق على خط الأساس ولديها تحسن كبير في جودة المحاذاة ودقة N-Gram والترجمة الحكم الطويلة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أسئلة البحث الحديثة أهمية الاهتمام الذاتي لمنتج المنتج في نماذج المحولات ويظهر أن معظم رؤساء الاهتمام تعلم أنماطا موضعية بسيطة. في هذه الورقة، ندفع أبعد من ذلك في خط البحث هذا واقتراح آلية بديلة جديدة عن النفس: الاهتمام المتكرر (ران). تتعلم RAN بشكل مباشر أوزان الاهتمام دون أي تفاعل رمزي إلى رمز ويحسن قدرتها على تفاعل الطبقة إلى الطبقة. عبر مجموعة واسعة من التجارب في 10 مهام ترجمة آلية، نجد أن نماذج RAN تنافسية وتفوق نظيرها المحول في بعض السيناريوهات، مع عدد أقل من المعلمات ووقت الاستدلال. خاصة، عند تطبيق ركض إلى فك ترميز المحولات، يجلب التحسينات المتسقة عن طريق حوالي +0.5 بلو في 6 مهام الترجمة و +1.0 Bleu على مهمة الترجمة التركية الإنجليزية. بالإضافة إلى ذلك، نجرينا تحليلا مكثفا بشأن أوزان الاهتمام في ركض لتأكيد المعقولية. ران لدينا هو بديل واعد لبناء نماذج NMT أكثر فعالية وكفاءة.
نقدم طريقة بسيطة لتوسيع المحولات إلى الأشجار من جانب المصدر.نحن نحدد عددا من الأقنعة التي تحد من اهتمام الذات بناء على العلاقات بين العقد الشجرة، ونحن نسمح لكل انتباه في أن يتعلم أي قناع أو أقنعة لاستخدامها.عند الترجمة من الإنجليزية إلى العديد من لغا ت الموارد المنخفضة، والترجمة في كلا الاتجاهين بين اللغة الإنجليزية والألمانية، تعمل طريقتنا دائما على التحليل البسيط لمجموعة تحليل جانب المصدر ويحسن دائما تقريبا على خط أساس تسلسل إلى تسلسل، حسب ما يصلإلى +2.1 بلو.
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا لنسيان الكارثي الذي ينخفض ​​فيه الأداء الموجود على المجال العام بشكل كبير. في هذا العمل، نقترح إطارا تعليميا مستمرا جديدا لنماذج NMT. نحن نعتبر سيناريو حيث يتألف التدريب من مراحل متعددة واقتراح تقنية تقطير معارف ديناميكية لتخفيف مشكلة النسيان الكارثي بشكل منهجي. نجد أيضا أن التحيز موجود في الإسقاط الخطي الإخراج عند ضبط جيد على Corpus في المجال، واقترح وحدة تصحيح التحيز للقضاء على التحيز. نقوم بإجراء تجارب في ثلاثة إعدادات تمثيلية لتطبيق NMT. تظهر النتائج التجريبية أن الطريقة المقترحة تحقق أداء فائقا مقارنة بالنماذج الأساسية في جميع الإعدادات.
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت وسط.يبدأ فك شفرة الكلمات الموجودة على الجانب الأيمن من الكلمة المتوسطة ثم يولد كلمات على اليسار.نحن نقيم طريقة فك التشفير الذكية المقترحة على ثلاث مجموعات البيانات.تظهر النتائج التجريبية أن الطريقة المقترحة يمكن أن تتفوق بشكل كبير على النماذج الأساسية القوية.
نقترح طريقة تكبير البيانات للترجمة الآلية العصبية.إنه يعمل عن طريق تفسير نماذج اللغة ومحاذاة الجمل الفعلية سببا.على وجه التحديد، فإنه يخلق كورس ترجمة موازية مزعجة عن طريق توليد عبارات محاذاة مضادة للمحاطة (المسار).نحن نولد هذه من خلال أخذ عينات من عب ارات مصدر جديدة من نموذج لغة ملثم، ثم أخذ عينات من عبارة مستهدفة محاذاة محاذاة من خلال الإشارة إلى أن نموذج لغة الترجمة يمكن تفسيره على أنه نموذج سببي هيكلي Gumbel-Max (Oberst و Sontag، 2019).مقارنة بالعمل السابق، تأخذ طريقتنا السياق ومحاذاة في الاعتبار للحفاظ على التماثل بين المصدر والتسلسلات المستهدفة.تجارب على iwslt'15 الإنجليزية → الفيتنامية، WMT'17 الإنجليزية → الألمانية، WMT'18 English → التركية، و WMT'19 قوية الإنجليزية → معرض الفرنسية أن الطريقة يمكن أن تحسن أداء الترجمة والخلفية والترجمة قوية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا